

CE EMC TEST REPORT

REPORT NO.: CE120412D13

MODEL NO.: FD8136-FXX

RECEIVED: Apr. 12, 2012

TESTED: Apr. 16 ~ 26, 2012

ISSUED: Apr. 27, 2012

APPLICANT: VIVOTEK INC.

- ADDRESS: 6F, No.192, Lien-Cheng Rd., Chung-Ho , New Taipei City, 235, Taiwan, R.O.C.
- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- LAB LOCATION: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City 244, Taiwan (R.O.C.)

This test report consists of 63 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agency. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Table of Contents

RELE	ASE CONTROL RECORD	4
1	CERTIFICATION	5
2 2.1	SUMMARY OF TEST RESULTS MEASUREMENT UNCERTAINTY	
3 3.1 3.2 3.3 3.3.1 3.3.2	GENERAL INFORMATION GENERAL DESCRIPTION OF EUT GENERAL DESCRIPTION OF APPLIED STANDARDS DESCRIPTION OF SUPPORT UNITS FOR EMISSION TEST FOR IMMUNITY TEST	8 9 10 10 .11
4 4.1	EMISSION TEST CONDUCTED EMISSION MEASUREMENT AT TELECOMMUNICATION	
4.1.1	PORTS LIMIT OF CONDUCTED COMMON MODE DISTURBANCE AT TELECOMMUNICATION PORTS	
4.1.2	TEST INSTRUMENTS	
4.1.3	TEST PROCEDURE	
4.1.4	DEVIATION FROM TEST STANDARD	16
4.1.5 4.1.6	TEST SETUP EUT OPERATING CONDITIONS	1/
4.1.0	TEST RESULTS	
4.2	RADIATED EMISSION MEASUREMENT	
4.2.1	LIMITS OF RADIATED EMISSION MEASUREMENT	
4.2.2	TEST INSTRUMENTS	
4.2.3	TEST PROCEDURE	
4.2.4	DEVIATION FROM TEST STANDARD	-
4.2.5 4.2.6	TEST SETUP EUT OPERATING CONDITIONS	20 27
4.2.7	TEST RESULTS	
5	IMMUNITY TEST	
5 5.1	GENERAL DESCRIPTION	
5.2	GENERAL PERFORMANCE CRITERIA DESCRIPTION	33
5.3	EUT OPERATING CONDITION	
5.4	ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)	
5.4.1	TEST SPECIFICATION	
5.4.2		
5.4.3 5.4.4	TEST PROCEDURE DEVIATION FROM TEST STANDARD	
5.4.5	TEST SETUP	
5.4.6	TEST RESULTS	
5.5	RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNIT	
5.5.1	TEST (RS) TEST SPECIFICATION	39

5.5.2	TEST INSTRUMENTS	. 40
5.5.3	TEST PROCEDURE	
5.5.4	DEVIATION FROM TEST STANDARD	. 41
5.5.5	TEST SETUP	
5.5.6	TEST RESULTS	. 43
5.6	ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (EFT)	
5.6.1	TEST SPECIFICATION	. 44
5.6.2	TEST INSTRUMENTS	
5.6.3	TEST PROCEDURE	
5.6.4	DEVIATION FROM TEST STANDARD	
5.6.5	TEST SETUP	
5.6.6	TEST RESULTS	. 46
5.7	IMMUNITY TO CONDUCTED DISTURBANCES INDUCED BY RF FIELDS	
	(CS)	. 47
5.7.1	TEST SPECIFICATION	
5.7.2	TEST INSTRUMENTS	
5.7.3	TEST PROCEDURE	
5.7.4	DEVIATION FROM TEST STANDARD	
5.7.5	TEST SETUP	
5.7.6	TEST RESULTS	. 51
5.8	POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST	
5.8.1	TEST SPECIFICATION	
5.8.2	TEST INSTRUMENTS	
5.8.3	TEST PROCEDURE	
5.8.4	DEVIATION FROM TEST STANDARD	
5.8.5	TEST SETUP	
5.8.6	TEST RESULTS	. 54
6	PHOTOGRAPHS OF THE TEST CONFIGURATION	. 55
7	APPENDIX - INFORMATION ON THE TESTING LABORATORIES	. 63

RELEASE CONTROL RECORD

CE120412D13 Original release Apr. 27, 20	12

1 CERTIFICATION

PRODUCT: Indoor Dome Network Camera **BRADN NAME: VIVOTEK** MODEL NO.: FD8136-FXX (The XX=0-9,A-Z,blank for different Lens specification.) **APPLICANT: VIVOTEK INC. TEST ITEM: ENGINEERING SAMPLE TESTED:** Apr. 16 ~ 26, 2012 STANDARDS: EN 55022:2010, Class B EN 55024:2010 IEC 61000-4-2:2008 ED.2.0 IEC 61000-4-3:2010 ED.3.2 IEC 61000-4-4:2011 ED.2.1 IEC 61000-4-5:2005 ED.2.0 (Not Applicable) IEC 61000-4-6:2008 ED.3.0 IEC 61000-4-8:2009 ED.2.0 IEC 61000-4-11:2004 ED.2.0 (Not Applicable)

The above equipment (model: FD8136-F2) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

, DATE: Apr. >7. PREPARED BY : Jessica Cheng / Specialist) DATE: APPROVED BY : (Kenny Meng / Assistant Manager)

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

EMISSION						
Standard	Test Type	Test Type Result				
	Conducted Test	N/A	Refer to item 3.2			
EN 55022:2010, Class B	Conducted Test (telecom port)	PASS	Meets Class B Limit Minimum passing margin is –8.03 dB at 23.12891 MHz			
	Radiated Test (30MHz ~ 2GHz)	PASS	Meets Class B Limit Minimum passing margin is –2.04 dB at 160.01 MHz			

Note: The EUT highest frequency generated **320MHz** and therefore the test frequency range was performed up to 2GHz for radiated emission test.

IMMUNITY (EN 55024:2010)					
Standard	Test Type	Result	Remarks		
IEC 61000-4-2:2008 ED.2.0	Electrostatic discharge immunity test	PASS	Meets the requirements of Performance Criterion B		
IEC 61000-4-3:2010 ED.3.2	ale etreres are etic field		Meets the requirements of Performance Criterion A		
IEC 61000-4-4:2011 ED.2.1	Electrical fast transient / burst immunity test.	PASS	Meets the requirements of Performance Criterion A		
IEC 61000-4-5:2005 ED.2.0	Surge immunity test	N/A	Refer to item 3.2		
IEC 61000-4-6:2008 ED.3.0 Immunity to conducted disturbances, induced by radio-frequency fields		PASS	Meets the requirements of Performance Criterion A		
IEC 61000-4-8:2009 ED.2.0	9 Power frequency magnetic field immunity test.		Meets the requirements of Performance Criterion A		
IEC 61000-4-11:2004 ED.2.0	linterruptions immunity		Refer to item 3.2		

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

"This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2."

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted Emission at Telecommunication port	150kHz ~ 30MHz	2.7683 dB
Dedicted emissions	30MHz ~ 1GHz	3.76 dB
Radiated emissions	Above 1GHz	3.36 dB

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Indoor Dome Network Camera		
MODEL NO. FD8136-FXX			
POWER SUPPLY	POE (DC 48V)		
DATA CABLE SUPPLIED	N/A		

NOTE:

- 1. The EUT is an Indoor Dome Network Camera.
- The XX=0-9,A-Z,blank for different Lens specification. During the test, model:
 FD8136-F2 was selected as a representative and therefore only its test data was recorded in this report.
- 3. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

3.2 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a kind of ITE equipment and, according to the specifications of the manufacturers, must comply with the requirements of the following standards:

EN 55022:2010, Class B EN 55024:2010 IEC 61000-4-2:2008 ED.2.0 IEC 61000-4-3:2010 ED.3.2 IEC 61000-4-4:2011 ED.2.1 IEC 61000-4-6:2008 ED.3.0 IEC 61000-4-8:2009 ED.2.0

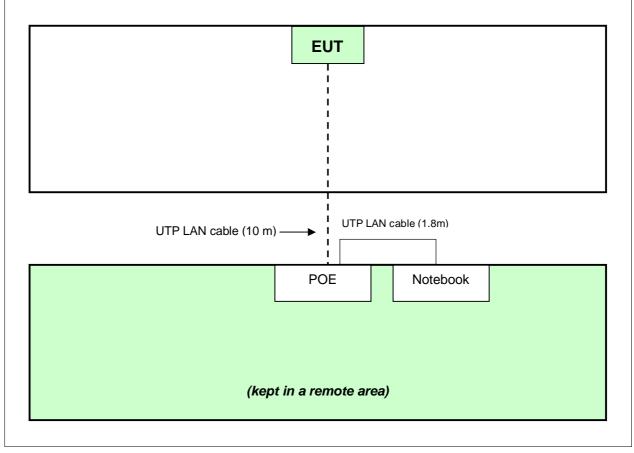
The EUT consumes DC power and therefore the item of **EN 55022**, **Conducted emission** and **IEC 61000-4-11** were not tested.

The EUT doesn't connect directly to the outdoor cables and the EUT consumes DC power and therefore the standard, **IEC 61000-4-5**, was not tested.

Notes: The above IEC basic standards are applied with latest version if customer has no special requirement

3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


3.3.1 FOR EMISSION TEST

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK COMPUTER	DELL	PP04X	6C1VY1S	FCC DoC Approved
2	POE	-	POE-IJ-1748NDN	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS		
1	10m UTP LAN cable.		
	1.8m UTP LAN cable		
2	AC I/P: 100-240V		
	DC O/P: 48V, 0.35A		
NOTE: (1) All power cords of the above support units are non shielded (1.8m).			

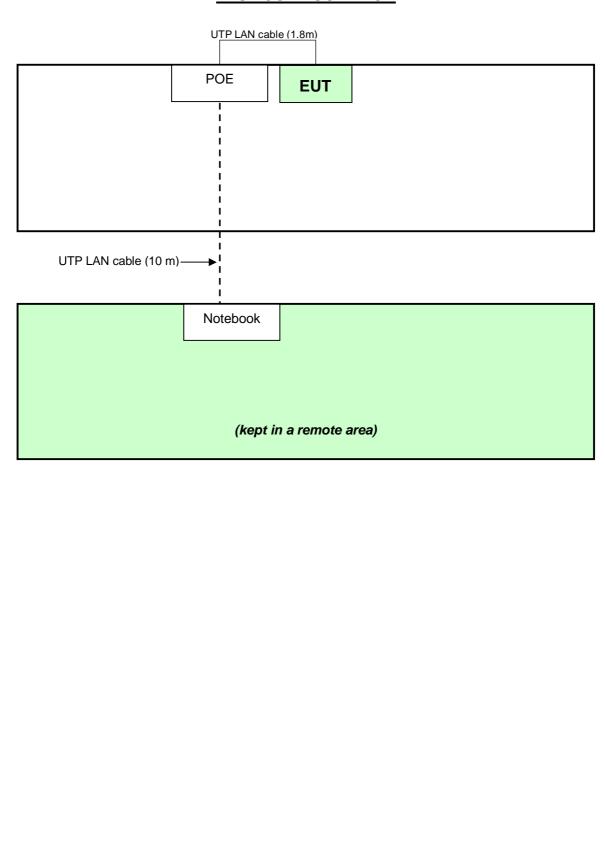
(2) Support unit 2 was provided by client.

TEST CONFIGURATION

3.3.2 FOR IMMUNITY TEST

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Notebook PC	DELL	Latitude E6420	HPFC5Q1	FCC DoC Approved
2	POE	-	POE-IJ-1748ND N	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	10m UTP LAN cable.
1	1.8m UTP LAN cable
2	AC I/P: 100-240V
	DC O/P: 48V, 0.35A


NOTE: (1) All power cords of the above support units are non shielded (1.8m).

(2) One UTP LAN cable (1.8m) was connected from EUT to support unit 2.

(3) Support unit 2 was provided by client.

TEST CONFIGURATION

4 EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT AT TELECOMMUNICATION PORTS

4.1.1 LIMIT OF CONDUCTED COMMON MODE DISTURBANCE AT TELECOMMUNICATION PORTS

TEST STANDARD: EN 55022 FOR CLASS A EQUIPMENT

FREQUENCY	Voltage Limit (dBuV)		Current Li	mit (dBuA)
(MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	97 – 87	84 - 74	53 – 43	40 – 30
0.5 - 30.0	87	74	43	30

FOR CLASS B EQUIPMENT

FREQUENCY	Voltage Limit (dBuV)		Current Limit (dBuA)	
(MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	84 - 74	74 - 64	40 - 30	30 – 20
0.5 - 30.0	74	64	30	20

NOTE: (1) The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ Test Receiver	ESCS 30	100276	Jan. 04, 2012	Jan. 03, 2013
ROHDE & SCHWARZ Artificial Mains Network (for EUT)	ESH3-Z5	100219	Nov. 24, 2011	Nov. 23, 2012
LISN With Adapter (for EUT)	AD10	C10Ada-001	Nov. 24, 2011	Nov. 23, 2012
ROHDE & SCHWARZ Artificial Mains Network (for peripherals)	ESH3-Z5	100218	Dec. 08, 2011	Dec. 07, 2012
Software	ADT_Cond_V7.3. 7	NA	NA	NA
Software	ADT_ISN_V7.3.7	NA	NA	NA
RF cable (JYEBAO)	5D-FB	Cable-C10.0 1	Feb. 20, 2012	Feb. 19, 2013
SUHNER Terminator (For ROHDE & SCHWARZ LISN)	65BNC-5001	E1-010773	Feb. 22, 2012	Feb. 21, 2013
FCC ISN	F-071115-1057-1	20652	Jan. 20, 2012	Jan. 19, 2013

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 10.

3. The VCCI Site Registration No. T-1611.

4. Tested Date: Apr. 17, 2012.

4.1.3 TEST PROCEDURE

For using ISN:

- a. The EUT is placed 0.4 meters from the conducting wall of the shielded room and connected to ISN directly to reference ground plane.
- b. If voltage measurement is used, measure voltage at the measurement port of the ISN, correct the reading by adding the ISN voltage division factor, and compare to the voltage limit.
- c. If current measurement is used, measure current with the current probe and compare to the current limit.
- d. It is not necessary to apply the voltage and the current limit if the ISN is used. A 50 Ω load has to be connected to the measurement port of the ISN during the current measurement.
- e. The disturbance levels and the frequencies of at least six highest disturbances are recorded from be measured each telecommunication port, which comprises the EUT.

For using a 150 $\ensuremath{\mathbb W}$ load to the outside surface of the shield cable:

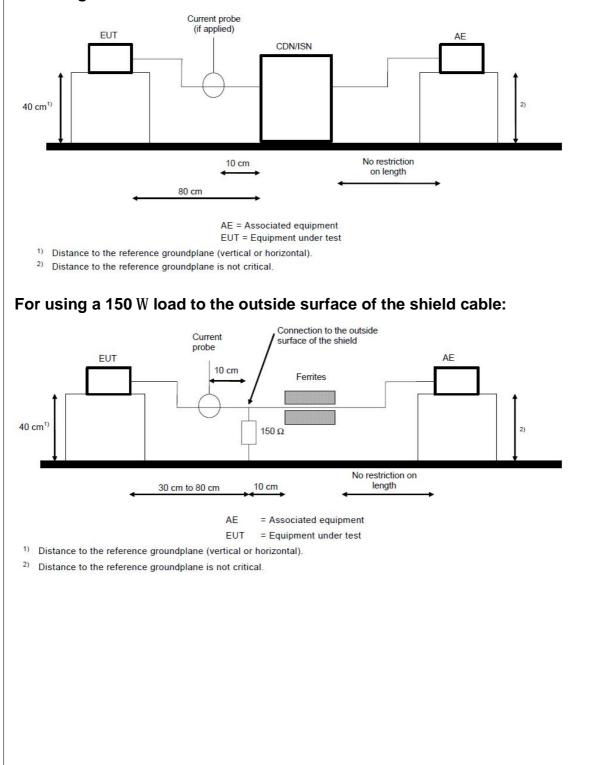
- a. Break the insulation and connect a 150 Ω resistor from the outside surface of the shield cable to ground, and apply a ferrite tube or clamp between 150 Ω connection and AE.
- b. The EUT is placed 0.4 meters from the conducting wall of the shielded room and connected to AE with the shield cable.
- c. Measure current with a current probe and compare to the current limit. The common mode impedance towards the right of the 150 Ω resistor.
- d. The disturbance levels and the frequencies of at least six highest disturbances are recorded from be measured each telecommunication port, which comprises the EUT.

For using a combination of current probe and capacitive voltage probe:

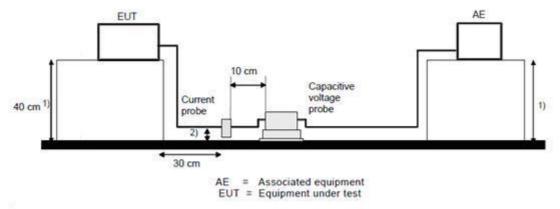
- a. The EUT is placed 0.4 meters from the conducting wall of the shielded room and connected to AE with a cable. The cable contains more than four balanced pairs or to unbalanced cable.
- b. Measure current with a current probe and compare to the current limit.
- c. Measure voltage with a capacitive probe and adjust the measured voltage as follows:
 - current margin ≤ 6 dB subtract the actual current margin from measured voltage;
 - current margin > 6 dB subtract 6 dB from measured voltage.

Compare adjusted voltage with the applicable voltage limit.

- d. Both the measured current and the adjusted voltage shall be below the applicable current and voltage limits.
- e. The disturbance levels and the frequencies of at least six highest disturbances are recorded from be measured each telecommunication port, which comprises the EUT.


4.1.4 DEVIATION FROM TEST STANDARD

No deviation



4.1.5 TEST SETUP

For using ISN:

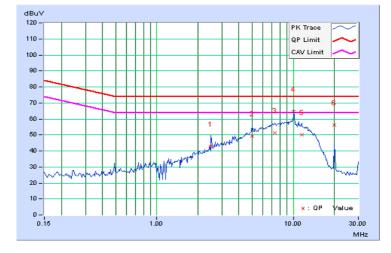
For using a combination of current probe and capacitive voltage probe:

Distance to the reference groundplane (vertical or horizontal)
 Distance 4± 1 cm from the reference groundplane.

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITIONS

- a. Connected the EUT with POE (kept in a remote area).
- b. Turned on the power of all equipment.
- c. EUT captured video signal.
- d. Server PC (kept in a remote area) run " IE ping IP" (286kB, 10% of transmission rate 10Mbps) and "TfGen.exe" (416kB, 10% of transmission rate 100Mbps) then sent and received messages to/ from EUT via POE with an UTP LAN cable (10 m)
- e. Steps c-e were repeated.

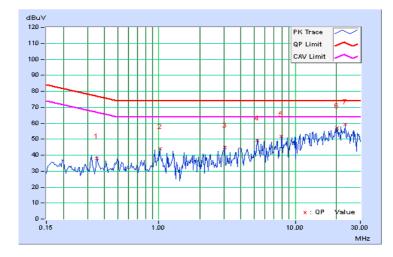

4.1.7 TEST RESULTS

TEST MODE	Operating	6dB BANDWIDTH	9 kHz
INPUT POWER (POE)	48Vdc	PHASE	RJ45 TELECOM PORT (10Mbps)
ENVIRONMENTAL CONDITIONS	24deg. C, 73% RH	TESTED BY: Brad Tung	

	Freq.	Corr.		ding lue	Emis Lev		Lin	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB ((uV)]	[dB (uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	A.V.	Q.P.	A.V.
1	2.50000	9.31	33.41	16.00	42.72	25.31	74.00	64.00	-31.28	-38.69
2	5.01953	9.31	39.91	25.81	49.22	35.12	74.00	64.00	-24.78	-28.88
3	7.32422	9.38	41.89	29.11	51.27	38.49	74.00	64.00	-22.73	-25.51
4	10.00000	9.46	55.00	34.43	64.46	43.89	74.00	64.00	-9.54	-20.11
5	11.55078	9.53	40.46	27.49	49.99	37.02	74.00	64.00	-24.01	-26.98
6	20.00183	9.91	46.12	38.59	56.03	48.50	74.00	64.00	-17.97	-15.50

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



TEST MODE	Operating	6dB BANDWIDTH	9 kHz	
INPUT POWER (POE)	48Vdc	PHASE	RJ45 TELECOM PORT (100Mbps)	
ENVIRONMENTAL CONDITIONS	24deg. C, 73% RH	TESTED BY: Brad Tung		

	Freq.	Corr.		ding lue	Emis Lev		Lin	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB ((uV)]	[dB (uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	A.V.	Q.P.	A.V.
1	0.34922	9.61	28.32	25.30	37.93	34.91	76.98	66.98	-39.05	-32.07
2	1.02344	9.37	34.49	31.82	43.86	41.19	74.00	64.00	-30.14	-22.81
3	3.03906	9.31	35.41	32.65	44.72	41.96	74.00	64.00	-29.28	-22.04
4	5.23438	9.32	39.86	37.66	49.18	46.98	74.00	64.00	-24.82	-17.02
5	7.92188	9.40	42.17	40.93	51.57	50.33	74.00	64.00	-22.43	-13.67
6	20.25781	9.92	47.02	43.57	56.94	53.49	74.00	64.00	-17.06	-10.51
7	23.12891	10.08	49.24	45.89	59.32	55.97	74.00	64.00	-14.68	-8.03

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

TEST STANDARD: EN 55022

FOR FREQUENCY BELOW 1000 MHz

FREQUENCY	Class A (at 10m)	Class B (at 10m)		
(MHz)	dBuV/m	dBuV/m		
30 – 230	40	30		
230 – 1000	47	37		

FOR FREQUENCY ABOVE 1000 MHz

FREQUENCY (GHz)	Class A (dBuV/m) (at 3m)		Class B (dBuV/m) (at 3n		
FREQUENCI (GHZ)	PEAK	AVERAGE	PEAK	AVERAGE	
1 to 3	76	56	70	50	
3 to 6	80	60	74	54	

NOTE: (1) The lower limit shall apply at the transition frequencies.

(2) Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

(3) All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	Up to 5 times of the highest frequency or 6 GHz, whichever is less

4.2.2 TEST INSTRUMENTS

Frequency Range 30MHz~1GHz

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ TEST RECEIVER	ESVS 30	841977/008	Apr. 25, 2011	Apr. 24, 2012
SCHAFFNER BILOG Antenna	CBL6111C	2793	Apr. 03, 2012	Apr. 02, 2013
ADT. Turn Table	TT100	0201	NA	NA
ADT. Tower	AT100	0201	NA	NA
Software	ADT_Radiated _V7.6.15.9.2	NA	NA	NA
ADT RF Switches BOX	EM-H-01-1	1004	Dec. 16, 2011	Dec. 15, 2012
WOKEN RF cable	8D	CABLE-ST10-01	Dec. 16, 2011	Dec. 15, 2012

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Open Site No. 10.

- 3. The VCCI Site Registration No. R-1625.
- 4. The Industry Canada Reference No. IC 7450E-10.
- 5. The FCC Site Registration No. 698148.
- 6. Tested Date: Apr. 10, 2012.

Frequency Range above 1GHz

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Spectrum	E4446A	MY46180403	Jun. 22, 2011	Jun. 21, 2012
Agilent Preamplifier	8449B	3008A01201	Feb. 29, 2012	Feb. 28, 2013
MITEQ Preamplifier	AMF-6F-26040 0-33-8P	892164	Mar. 02, 2012	Mar. 01, 2013
Schwarzbeck Horn Antenna	BBHA-9170	BBHA9170190	Oct. 07, 2011	Oct. 06, 2012
Schwarzbeck Horn Antenna	BBHA-9120-D1	D130	May 16, 2011	May 15, 2012
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	ADT_Radiated _V7.6.15.9.2	NA	NA	NA
SUHNER RF cable	SF102	Cable-CH6	Aug. 19, 2011	Aug. 18, 2012

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Chamber No. 6.
- 3. The Industry Canada Reference No. IC 7450E-6.

4. The VCCI Site Registration No. G-257

- 5. The FCC Site Registration No. 447212.
- 6. The minimum 3dB beamwidth of antenna is 30 degrees for above 1GHz test.

7. Tested Date: Apr. 10, 2012.

4.2.3 TEST PROCEDURE

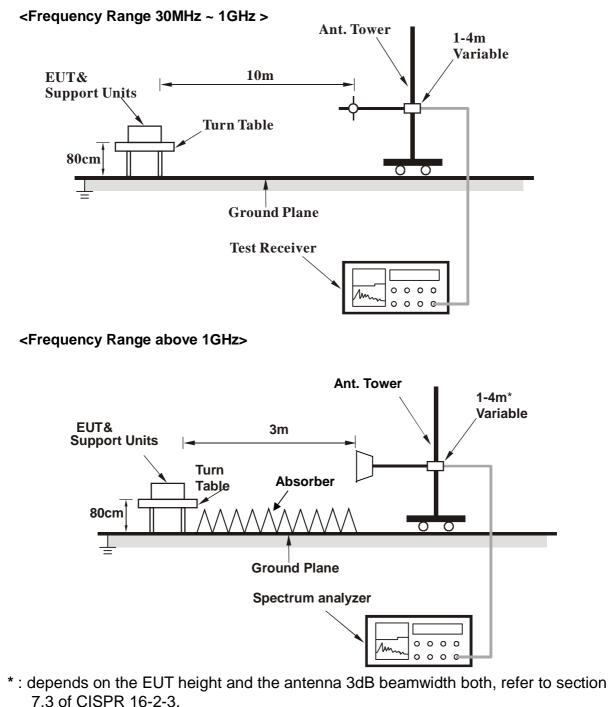
<Frequency Range 30MHz ~ 1GHz>

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
 - **NOTE:** The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.

<Frequency Range above 1GHz>

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter Semi-anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna can be varied from one meter-to four meters, the height of adjustment depends on the EUT height and the antenna 3dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

NOTE:


- 1. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak detection at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1GHz.
- 2. For measurement of frequency above 1000 MHz, the EUT was set 3 meters away from the receiver antenna.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

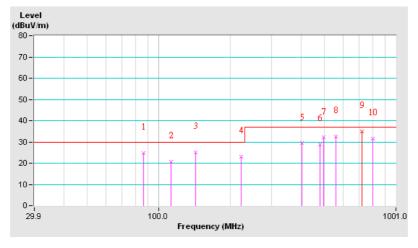
4.2.5 TEST SETUP

For the actual test configuration, please re-

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

- a. Connected the EUT with POE (kept in a remote area).
- b. Turned on the power of all equipment.
- c. EUT captured video signal.
- d. EUT sent and received messages from/to Server PC (kept in a remote area) via POE with two UTP LAN cables (10 m &1.8m).
- e. Steps c-e were repeated.

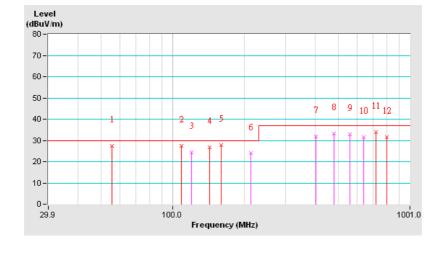

4.2.7 TEST RESULTS

TEST MODE	Operating	FREQUENCY RANGE	30-1000 MHz		
INPUT POWER (POE)	48Vdc	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak, 120 kHz		
ENVIRONMENTAL CONDITIONS	21deg. C, 73% RH	TESTED BY: Brad Tung			

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 10 M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	86.29	24.80 QP	30.00	-5.20	4.00 H	253	15.37	9.43	
2	112.58	20.73 QP	30.00	-9.27	4.00 H	150	8.20	12.53	
3	142.66	25.12 QP	30.00	-4.88	4.00 H	163	11.71	13.41	
4	222.25	23.13 QP	30.00	-6.87	4.00 H	169	9.78	13.35	
5	400.45	29.38 QP	37.00	-7.62	2.48 H	99	9.27	20.11	
6	480.40	28.81 QP	37.00	-8.19	2.48 H	217	6.83	21.98	
7	495.28	32.11 QP	37.00	-4.89	1.71 H	74	9.82	22.29	
8	560.04	32.58 QP	37.00	-4.42	2.07 H	222	8.55	24.03	
9	720.04	34.91 QP	37.00	-2.09	1.00 H	266	8.64	26.27	
10	800.04	31.55 QP	37.00	-5.45	1.00 H	19	3.41	28.14	

REMARKS:

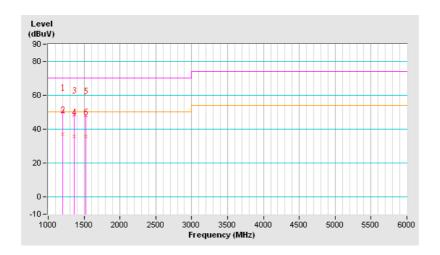
- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.



TEST MODE	Operating	FREQUENCY RANGE	30-1000 MHz
INPUT POWER (POE)	48Vdc	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak, 120 kHz
ENVIRONMENTAL CONDITIONS	21deg. C, 73% RH	TESTED BY: Brad Tu	ing

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 10 M									
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction		
No.	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor		
	(11112)	(dBuV/m)	(aba v/m)	(00)	(m)	(Degree)	(dBuV)	(dB/m)		
1	55.32	27.48 QP	30.00	-2.52	2.48 V	292	19.01	8.47		
2	108.81	27.42 QP	30.00	-2.58	1.00 V	336	15.22	12.20		
3	119.98	24.57 QP	30.00	-5.43	1.00 V	0	11.41	13.16		
4	143.31	26.84 QP	30.00	-3.16	1.00 V	19	13.45	13.39		
5	160.01	27.96 QP	30.00	-2.04	1.00 V	346	15.50	12.46		
6	213.00	23.98 QP	30.00	-6.02	1.00 V	252	11.34	12.64		
7	400.45	31.86 QP	37.00	-5.14	2.10 V	128	11.75	20.11		
8	480.40	33.31 QP	37.00	-3.69	1.56 V	314	11.34	21.98		
9	560.48	32.86 QP	37.00	-4.14	1.51 V	192	8.82	24.04		
10	640.42	31.65 QP	37.00	-5.35	2.00 V	58	6.12	25.53		
11	720.04	33.91 QP	37.00	-3.09	2.02 V	253	7.64	26.27		
12	800.06	31.51 QP	37.00	-5.49	1.98 V	80	3.37	28.14		

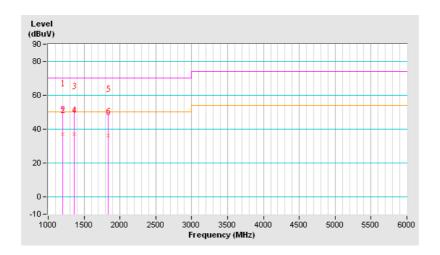
- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.



TEST MODE	Operating	FREQUENCY RANGE	1-2GHz
INPUT POWER (POE)	48Vdc	DETECTOR FUNCTION & BANDWIDTH	Peak/ Average, 1MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 85% RH	TESTED BY: Nick Cr	ien

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	1200.03	50.26 PK	70.00	-19.74	1.08 H	224	23.75	26.51	
2	1200.03	37.22 AV	50.00	-12.78	1.08 H	224	10.71	26.51	
3	1359.62	48.63 PK	70.00	-21.37	1.00 H	85	21.51	27.12	
4	1359.62	35.71 AV	50.00	-14.29	1.00 H	85	8.59	27.12	
5	1519.32	48.21 PK	70.00	-21.79	1.02 H	336	20.58	27.63	
6	1519.32	35.74 AV	50.00	-14.26	1.02 H	336	8.11	27.63	

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.


30

TEST MODE	Operating	FREQUENCY RANGE	1-2GHz
INPUT POWER (POE)	48Vdc	DETECTOR FUNCTION & BANDWIDTH	Peak/ Average, 1MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 85% RH	TESTED BY: Nick Cr	ien

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	1199.36	52.63 PK	70.00	-17.37	1.22 V	171	26.12	26.51	
2	1199.36	37.11 AV	50.00	-12.89	1.22 V	171	10.60	26.51	
3	1359.72	50.94 PK	70.00	-19.06	1.12 V	266	23.82	27.12	
4	1359.72	37.19 AV	50.00	-12.81	1.12 V	266	10.07	27.12	
5	1839.62	49.22 PK	70.00	-20.78	1.06 V	251	20.89	28.33	
6	1839.62	36.23 AV	50.00	-13.77	1.06 V	251	7.90	28.33	

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

5 IMMUNITY TEST

5.1 GENERAL DESCRIPTION

Product Standard:	EN 55024:2010	
Basic Standard, specification requirement, and Performance	IEC 61000-4-2 IEC 61000-4-3 IEC 61000-4-4	Electrostatic Discharge – ESD: 8kV air discharge, 4kV Contact discharge, Performance Criterion B Radio-Frequency Electromagnetic Field Susceptibility Test – RS: 80-1000 MHz, 3V/m, 80% AM (1kHz), Performance Criterion A Electrical Fast Transient/Burst - EFT AC Power line: 1kV, DC Power line: 0.5kV Signal line: 0.5kV
Criteria:	IEC 61000-4-6	Performance Criterion B Conducted Radio Frequency Disturbances Test – CS: 0.15-80 MHz, 3Vrms, 80% AM, 1kHz,
	IEC 61000-4-8	Performance Criterion A Power Frequency Magnetic Field Test, 50 Hz, 1A/m, Performance Criterion A

5.2 GENERAL PERFORMANCE CRITERIA DESCRIPTION

According to Clause 7 of EN 55024 standard, the following describes. **General performance criteria**

General performance criteria							
CRITERION A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.						
CRITERION B	After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomenon below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. However, no change of operating state if stored data is allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.						
CRITERION C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.						

Particular performance criteria

The particular performance criteria which are specified in the normative annexes of EN 55024 take precedence over the corresponding parts of the general performance criteria.

Where particular performance criteria for specific functions are not given, then the general performance criteria shall apply.

5.3 EUT OPERATING CONDITION

- a. Connected the EUT with POE.
- b. Turned on the power of all equipment.
- c. EUT captured video signal.
- d. EUT sent and received messages from/to Server PC (kept in a remote area) via POE with two UTP LAN cables (10 m &1.8m).
- e. Steps c-e were repeated.

5.4 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)

5.4.1 TEST SPECIFICATION

) pF
: 2, 4, 8kV (Direct)
harge : 2, 4kV (Indirect & Direct)
gative
: Min. 20 times at each test point
harge: Min. 200 times in total
irge
imum

5.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SCHAFFNER, ESD Simulator	NSG435	6008	Oct. 19, 2011	Oct. 18, 2012

NOTE: 1. The test was performed in ESD Room No. 2.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Apr. 26, 2012.

5.4.3 TEST PROCEDURE

The discharges shall be applied in two ways:

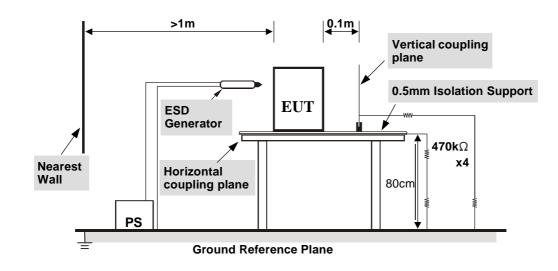
a. Contact discharges to the conductive surfaces and coupling planes:

The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the horizontal coupling plane. The remaining three test points shall each receive at least 50 direct contact discharges. If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

b. Air discharges at slots and apertures and insulating surfaces:

On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

The basic test procedure was in accordance with IEC 61000-4-2:


- a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator was positioned horizontally at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

5.4.4 DEVIATION FROM TEST STANDARD

No deviation

5.4.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference **P**lane. The **GRP** consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the **GRP** by means of a cable with 940k Ω total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were placed on the **HCP** and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

5.4.6 TEST RESULTS

TEST MODE	Operating	INPUT POWER (POE)	48Vdc
ENVIRONMENTAL	27deg. C, 38%RH,	TESTED BY: Josh Lin	
CONDITIONS	1005hPa		

TEST RESULTS OF DIRECT APPLICATION					
Discharge Level (kV)	Polarity	Test Point	Contact Discharge	Air Discharge	Performance Criterion
2, 4	+/-	2	Note(2)	N/A	В
2, 4, 8	+/-	1	N/A	Note(1)	А
2, 4, 8	+/-	3	N/A	Note(2)	В

Description of test point: Please refer to ESD test photo for representative mark only.

TEST RESULTS OF INDIRECT APPLICATION					
Discharge Level (kV)	Polarity	Test Point	Horizontal Coupling Plane	Vertical Coupling Plane	Performance Criterion
2	+/-	1 ~ 4	Note(1)	Note(1)	А
4	+/-	1 ~ 4	Note(3)	Note(3)	В

Description of test point:

- 1. Left side
- 2. Right side
- 3. Front side
- 4. Rear side

NOTE: (1) There was no change compared with initial operation during the test.

- (2) The EUT function loss during the test, but self-recoverable after the test for 30 ~ 35 seconds.
- (3) The preview function of EUT was delay 1 ~ 5 seconds during the test, but self-recoverable after the test.

5.5 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY TEST (RS)

5.5.1 TEST SPECIFICATION

Basic Standard:	IEC 61000-4-3
Frequency Range:	80 MHz - 1000 MHz
Field Strength:	3 V/m
Modulation:	1 kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Polarity of Antenna:	Horizontal and Vertical
Antenna Height:	1.5 m
Dwell Time:	3 seconds

5.5.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Signal Generator	E8257D	MY48050465	Jun. 11, 2011	Jun. 10, 2012
PRANA RF Amplifier	AP32DP280	0811-894	NA	NA
AR RF Amplifier	150W1000M3	306601	NA	NA
AR RF Amplifier	35S4G8AM4	0326094	NA	NA
AR RF Amplifier	100S1G4M3	0329249	NA	NA
AR Controller	SC1000M3	305910	NA	NA
Radisense Electric Field Sensor	CTR1001A RadiSense 6	06D00232SN O-02 06D00232SN O39	Jul. 15, 2011	Jul. 14,2012
Radisense Electric Field Sensor	CTR1002A	08D00057SN O-07	Jun. 06, 2011	Jun. 05, 2012
BOONTON RF Voltage Meter	4232A	10180	Jun. 14, 2011	Jun. 13, 2012
BOONTON Power Sensor	51011-EMC	34152	Jun. 14, 2011	Jun. 13, 2012
BOONTON Power Sensor	51011-EMC	34153	Jun. 15, 2011	Jun. 14, 2012
AR Log-Periodic Antenna	AT6080	0329465	NA	NA
EMCO BiconiLog Antenna	3141	1001	NA	NA
AR High Gain Antenna	AT4002A	306533	NA	NA
AR High Gain Horn Antenna	AT4010	0329800	NA	NA
CHANCE MOST Full Anechoic Chamber (9x5x3m)	Chance Most	RS-002	Feb. 10, 2012	Feb. 09, 2013
Software	ADT_RS_V7.6	NA	NA	NA

NOTE: 1. The test was performed in RS Room No.2.

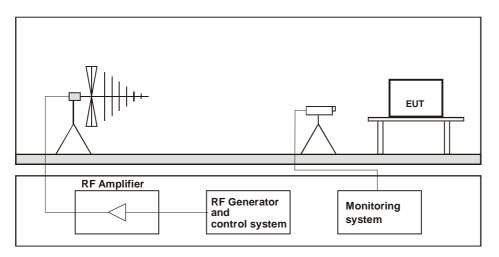
2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. The transmit antenna was located at a distance of 3 meters from the EUT.

4. Tested Date: Apr. 25, 2012.

5.5.3 TEST PROCEDURE

The test procedure was in accordance with IEC 61000-4-3


- a. The testing was performed in a fully-anechoic chamber.
- b. The frequency range is swept from 80 MHz to 1000 MHz with the signal 80% amplitude modulated with a 1kHz sine wave.
- c. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to respond, but shall in no case be less than 0,5s.
- d. The field strength level was 3V/m.
- e. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

5.5.4 DEVIATION FROM TEST STANDARD

No deviation

5.5.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

5.5.6 TEST RESULTS

TEST MODE	Operating	INPUT POWER (POE)	48Vdc
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY: Todd (Chang

Frequency (MHz)	Polarity	Azimuth	Field Strength (V/m)	Observation	Performance Criterion
	V & H	0	3		
80 1000	V & H	90	3	Noto	•
80 - 1000	V & H	180	3	Note	A
	V & H	270	3		

NOTE: There was no change compared with the initial operation during the test.

5.6 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (EFT)

5.6.1 TEST SPECIFICATION

Basic Standard:	IEC 61000-4-4
Test Voltage:	Power Line : N/A
	Signal/Control Line : 0.5 kV
Polarity:	Positive & Negative
Impulse Frequency:	100 kHz: only for signal lines of xDSL equipment
	5 kHz: except for xDSL equipment
Impulse Waveshape:	5/50 ns
Burst Duration:	15 ms
Burst Period:	300 ms
Test Duration:	1 min.

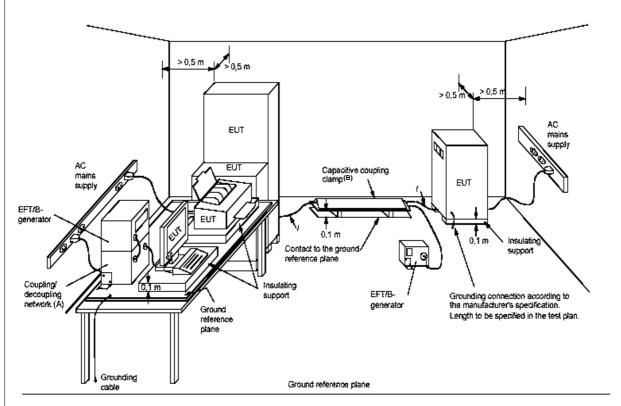
5.6.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Haefely, EFT Generator	PEFT 4010	154954	Apr. 19, 2012	Apr. 18, 2013
Haefely,Capacitive Clamp	IP4A	155173	NA	NA

NOTE: 1. The test was performed in EFT Room

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Apr. 18, 2012.

5.6.3 TEST PROCEDURE


- a. Both positive and negative polarity discharges were applied.
- b. The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 0.5 meter ± 0.05 meter.
- c. The duration time of each test sequential was 1 minute.
- d. The transient/burst waveform was in accordance with IEC 61000-4-4, 5/50ns.

5.6.4 DEVIATION FROM TEST STANDARD

No deviation

5.6.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

- *I*: length between clamp and the EUT to be tested (should be 0.5 ± 0.05 m)
- (A): location for supply line coupling
- (B): location for signal lines coupling

NOTE:

EUTs, whether stationary floor-mounted or table top, and equipment designed to be mounted in other configurations, shall be placed on a ground reference plane and shall be insulated from it by an insulating support 0,1 m \pm 0,01 m thick. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

5.6.6 TEST RESULTS

TEST MODE	Operating	INPUT POWER (POE)	48Vdc
ENVIRONMENTAL CONDITIONS	25deg. C, 67%RH	TESTED BY: Todd (Chang

Test Point	Polarity	Test Level (kV)	Observation	Performance Criterion
Cat. 5 Line	+/-	0.5	Note	A

NOTE: There was no change compared with the initial operation during the test.

5.7 IMMUNITY TO CONDUCTED DISTURBANCES INDUCED BY RF FIELDS (CS)

5.7.1 TEST SPECIFICATION

Basic Standard:	IEC 61000-4-6
Frequency Range:	0.15 MHz - 80 MHz
Field Strength:	3 V _{r.m.s.}
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Coupled Cable:	Power Mains, Signal Line
Coupling Device:	CDN-T8

5.7.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ Signal Generator	SMY01	841104/033	Nov. 23, 2011	Nov. 22, 2012
Digital Sweep Function Generator	8120	984801	NA	NA
AR Power Amplifier	75A250AM1	312196	NA	NA
FCC Coupling Decoupling Network	FCC-801-M3 -25A	48	Aug. 19, 2011	Aug. 18, 2012
FCC Coupling Decoupling Network	FCC-801-M3 -25A	01022	Feb. 24, 2012	Feb. 23, 2013
FCC Coupling Decoupling Network	FCC-801-M2 -16A	01047	Aug. 19, 2011	Aug. 18, 2012
FISCHER CUSTOM COMMUNICATIONS EM Injection Clamp	FCC-203I	50	NA	NA
FISCHER CUSTOM COMMUNICATIONS Current Injection Clamp	F-120-9A	361	NA	NA
EM TEST Coupling Decoupling Network	CDN M1/32A	306508	Feb. 24, 2012	Feb. 23, 2013
FCC Coupling Decoupling Network	FCC-801-T8	02038	Feb. 24, 2012	Feb. 23, 2013
FCC Coupling Decoupling Network	FCC-801-T4	02031	Feb. 24, 2012	Feb. 23, 2013
FCC Coupling Decoupling Network	FCC-801-T2	02021	Feb. 24, 2012	Feb. 23, 2013
R&S Power Sensor	NRV-Z5	837878/038	Nov. 15, 2011	Nov. 14, 2012
R&S Power Sensor	NRV-Z5	837878/039	Nov. 14, 2011	Nov. 13, 2012
R&S Power Meter	NRVD	837794/040	Nov. 15, 2011	Nov. 14, 2012
Software	ADT_CS_V7 .4.2	NA	NA	NA

NOTE: 1. The test was performed in CS Room No. 1.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: Apr. 20, 2012.

5.7.3 TEST PROCEDURE

- a. The EUT shall be tested within its intended operating and climatic conditions.
- b. An artificial hand was placed on the hand-held accessory and connected to the ground reference plane.
- c. One of the CDNs not used for injection was terminated with 50Ω , providing only one return path. All other CDNs were coupled as decoupling networks.
- d. The frequency range is swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal is modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. Where the frequency is swept incrementally, the step size shall not exceed 1 % of the preceding frequency value.
- e. The dwell time of the amplitude modulated carrier at each frequency shall not be less than the time necessary for the EUT to be exercised and to respond, but shall in no case be less than 0,5 s. The sensitive frequencies (e.g. clock frequencies) shall be analyzed separately.
- f. Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

5.7.4 DEVIATION FROM TEST STANDARD

No deviation

5.7.5 TEST SETUP CDN-M2 >0,5 m Т2 0,1 m < L < 0,3 m C 0.1 m < L < 0.3 m To AE or Mains telecommunication lines CDN-T2 Balanced pair 0 в A >0,5 m Mains T2 Unscreened CDN-M2 non-balanced cable Q Mains т 500 Q С CDN-AF2 ŀ 200 pE AF T2 Insulating support h = 0,1 m Artificial hand Reference ground plane T Termination 50 Ω T2 Power attenuator (6 dB) Test generator IEC 1694/03

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

Note: 1.The EUT clearance from any metallic obstacles shall be at least 0,5 m.

- 2. Interconnecting cables (≤ 1 m) belonging to the EUT shall remain on the insulating support.
- 3. The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

5.7.6 TEST RESULTS

TEST MODE	Operating	INPUT POWER (POE)	48Vdc
ENVIRONMENTAL CONDITIONS	22deg. C, 57%RH	TESTED BY: Thoma	as Cheng

FREQUENCY (MHz)	FIELD STRENGTH (V _{r.m.s.})	CABLE	INJECTION METHOD	RETURN PATH	OBSER- VATION	PERFORMANCE CRITERION
0.15 – 80	3	RJ45	CDN-T8	None	Note	А

NOTE: There was no change compared with the initial operation during the test.

5.8 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

5.8.1 TEST SPECIFICATION

Basic Standard:	IEC 61000-4-8
Frequency Range:	50Hz
Field Strength:	1 A/m
Observation Time:	1 minute
Inductance Coil:	Rectangular type, 1 m x 1 m

5.8.2 TEST INSTRUMENTS

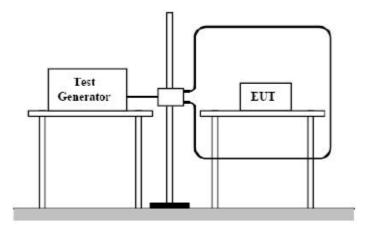
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HAEFELY Magnetic	MAG 100.1	083794-06	NA	NA
Field Tester				
COMBINOVA				
Magnetic	MFM10	224	Apr. 12, 2012	Apr. 11, 2013
Field Meter				

NOTE: 1. The test was performed in EMS Room No. 1.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: Apr. 18, 2012.

5.8.3 TEST PROCEDURE


- a. The equipment is configured and connected to satisfy its functional requirements.
- b. The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- c. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

5.8.4 DEVIATION FROM TEST STANDARD

No deviation

5.8.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

FLOOR-STANDING EQUIPMENT

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50 % of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

5.8.6 TEST RESULTS

TEST MODE	Operating	INPUT POWER (POE)	48Vdc
ENVIRONMENTAL CONDITIONS	25deg. C, 67%RH	TESTED BY: Todd Chang	

Direction	Field Strength (A/m)	Observation	Performance Criterion
X - Axis	1	Note	A
Y - Axis	1	Note	А
Z - Axis	1	Note	A

NOTE: There was no change compared with the initial operation during the test.

6 PHOTOGRAPHS OF THE TEST CONFIGURATION

TELECOMMUNICATION PORT - RJ45 OF CONDUCTED EMISSION TEST

RADIATED EMISSION TEST <Frequency Range 30MHz ~ 1GHz>

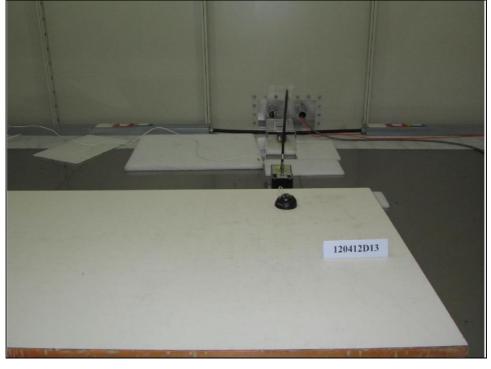
RADIATED EMISSION TEST <Frequency Range above 1GHz>

ESD TEST

ESD TEST POINT



RS TEST



EFT TEST - Cat. 5 Line

CONDUCTED SUSCEPTIBILITY TEST - Cat. 5 Line

POWER-FREQUENCY MAGNETIC FIELDS TEST

7 APPENDIX - INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation and authorization certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5.phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Fax: 886-2-26051924 Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

----END----