

CE EMC TEST REPORT

REPORT NO.: CE120112D02

MODEL NO.: FD8335H

RECEIVED: Jan. 12, 2012

TESTED: Jan. 13 ~ Feb. 16, 2012

ISSUED: Feb. 29, 2012

APPLICANT: VIVOTEK INC.

ADDRESS: 6F, No.192, Lien-Cheng Rd., Chung-Ho, New Taipei

City, 235, Taiwan, R.O.C.

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.)

Ltd., Taoyuan Branch

LAB LOCATION: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist., New

Taipei City 244, Taiwan (R.O.C.)

This test report consists of 90 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agency. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Table of Contents

RELEA	ASE CONTROL RECORD	5
1	CERTIFICATION	6
2	SUMMARY OF TEST RESULTS	7
2.1	MEASUREMENT UNCERTAINTY	8
3	GENERAL INFORMATION	
3.1	GENERAL DESCRIPTION OF EUT	
3.2	DESCRIPTION OF TEST MODES	
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	
3.4 3.4.1	DESCRIPTION OF SUPPORT UNITSFOR EMISSION TEST	
3.4.1	FOR IMMUNITY TEST	
4 4.1	EMISSION TESTCONDUCTED EMISSION MEASUREMENT	
4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	
4.1.2	TEST INSTRUMENTS	
4.1.3	TEST PROCEDURE	
4.1.4	DEVIATION FROM TEST STANDARD	
4.1.5	TEST SETUP	19
4.1.6	EUT OPERATING CONDITIONS	_
4.1.7	TEST RESULTS (1)	
4.1.8	TEST RESULTS (2)	23
4 0	CONDITIONED ENGLISHED AND ADDEDUCED AT THE ECONOMISSION	
4.2	CONDUCTED EMISSION MEASUREMENT AT TELECOMMUNICATION	25
	PORTS	25
4.24.2.1	PORTSLIMIT OF CONDUCTED COMMON MODE DISTURBANCE AT	
	PORTSLIMIT OF CONDUCTED COMMON MODE DISTURBANCE AT TELECOMMUNICATION PORTS	25
4.2.1	PORTSLIMIT OF CONDUCTED COMMON MODE DISTURBANCE AT	25 26
4.2.1	PORTSLIMIT OF CONDUCTED COMMON MODE DISTURBANCE AT TELECOMMUNICATION PORTSTEST INSTRUMENTS	25 26 27
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	PORTS	25 26 27 27 28
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6	PORTS	25 26 27 27 28 30
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6	PORTS	25 26 27 27 28 30
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8	PORTS	25 26 27 27 28 30 31 33
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.3	PORTS	25 26 27 27 28 30 31 33 35
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.3 4.3.1	PORTS	25 26 27 27 28 30 31 33 35 35
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.3 4.3.1 4.3.2	PORTS	25 26 27 27 28 30 31 33 35 35 36
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.3 4.3.1 4.3.2 4.3.3	PORTS	25 26 27 27 28 30 31 33 35 35 36 37
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.3 4.3.1 4.3.2 4.3.3 4.3.4	PORTS	25 26 27 27 28 30 31 33 35 35 36 37 38 39
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.3 4.3.1 4.3.2 4.3.3 4.3.4	PORTS	25 26 27 27 28 30 31 33 35 35 36 37 38 39
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	PORTS	25 26 27 27 28 30 31 33 35 35 36 37 38 39 40
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6	PORTS LIMIT OF CONDUCTED COMMON MODE DISTURBANCE AT TELECOMMUNICATION PORTS TEST INSTRUMENTS TEST PROCEDURE DEVIATION FROM TEST STANDARD TEST SETUP EUT OPERATING CONDITIONS TEST RESULTS (1) TEST RESULTS (2) RADIATED EMISSION MEASUREMENT LIMITS OF RADIATED EMISSION MEASUREMENT TEST INSTRUMENTS TEST PROCEDURE DEVIATION FROM TEST STANDARD TEST SETUP EUT OPERATING CONDITIONS	25 26 27 27 28 30 31 33 35 36 37 38 39 40 41
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7	PORTS. LIMIT OF CONDUCTED COMMON MODE DISTURBANCE AT TELECOMMUNICATION PORTS TEST INSTRUMENTS. TEST PROCEDURE DEVIATION FROM TEST STANDARD. TEST SETUP. EUT OPERATING CONDITIONS TEST RESULTS (1) TEST RESULTS (2) RADIATED EMISSION MEASUREMENT LIMITS OF RADIATED EMISSION MEASUREMENT TEST INSTRUMENTS TEST PROCEDURE DEVIATION FROM TEST STANDARD TEST SETUP EUT OPERATING CONDITIONS TEST RESULTS (1) TEST RESULTS (1) TEST RESULTS (2)	25 26 27 27 28 30 31 33 35 35 36 37 38 39 40 41 45
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8	PORTS LIMIT OF CONDUCTED COMMON MODE DISTURBANCE AT TELECOMMUNICATION PORTS TEST INSTRUMENTS TEST PROCEDURE DEVIATION FROM TEST STANDARD TEST SETUP EUT OPERATING CONDITIONS TEST RESULTS (1) TEST RESULTS (2) RADIATED EMISSION MEASUREMENT LIMITS OF RADIATED EMISSION MEASUREMENT TEST INSTRUMENTS TEST PROCEDURE DEVIATION FROM TEST STANDARD TEST SETUP EUT OPERATING CONDITIONS TEST RESULTS (1)	25 26 27 27 28 30 31 35 35 36 37 38 40 41 45 49

5.2	GENERAL PERFORMANCE CRITERIA DESCRIPTION	50
5.3	EUT OPERATING CONDITION	
5.4	ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)	52
5.4.1	TEST SPECIFICATION	52
5.4.2	TEST INSTRUMENTS	52
5.4.3	TEST PROCEDURE	
5.4.4	DEVIATION FROM TEST STANDARD	53
5.4.5	TEST SETUP	54
5.4.6	TEST RESULTS	
5.5	RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNIT	ΓΥ
	TEST (RS)	
5.5.1	TEST SPECIFICATION	
5.5.2	TEST INSTRUMENTS	
5.5.3	TEST PROCEDURE	
5.5.4	DEVIATION FROM TEST STANDARD	
5.5.5	TEST SETUP	
5.5.6	TEST RESULTS	
5.6	ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (EFT)	
5.6.1	TEST SPECIFICATION	
5.6.2	TEST INSTRUMENTS	
5.6.3	TEST PROCEDURE	
5.6.4	DEVIATION FROM TEST STANDARD	
5.6.5	TEST SETUP	
5.6.6	TEST RESULTS	
5.7	SURGE IMMUNITY TEST	
5.7.1	TEST SPECIFICATION	
5.7.2	TEST INSTRUMENTS	
5.7.3	TEST PROCEDURE	
5.7.4	DEVIATION FROM TEST STANDARD	
5.7.5	TEST SETUP	
5.7.6	TEST RESULTS	
5.8	IMMUNITY TO CONDUCTED DISTURBANCES INDUCED BY RF FIELDS	
504	(CS)	. 07
5.8.1 5.8.2	TEST SPECIFICATIONTEST INSTRUMENTS	
5.8.3	TEST PROCEDURE	
5.8.4	DEVIATION FROM TEST STANDARD	
5.8.5	TEST SETUP	
5.8.6	TEST SETUP	
5.0.0	POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST	
5.9.1	TEST SPECIFICATION	
5.9.2	TEST INSTRUMENTS	
5.9.3	TEST PROCEDURE	
5.9.4	DEVIATION FROM TEST STANDARD	
5.9.5	TEST SETUP	
5.9.6	TEST RESULTS	
3.3.0		

6	PHOTOGRAPHS OF THE TEST CONFIGURATION75
7	APPENDIX - INFORMATION ON THE TESTING LABORATORIES90
1	AT ENDIX - INFORMATION ON THE TESTING EABORATORIES90

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
CE120112D02	Original release	Feb. 29, 2012

Report No.: CE120112D02 5 Report Format Version 4.1.0

CERTIFICATION

PRODUCT: Outdoor Dome Network Camera

BRADN NAME: VIVOTEK MODEL NO.: FD8335H

APPLICANT: VIVOTEK INC.

TEST ITEM: ENGINEERING SAMPLE TESTED: Jan. 13 ~ Feb. 16, 2012

STANDARDS: EN 55022:2010, Class A

EN 55024:2010

IEC 61000-4-2:2008 ED.2.0

IEC 61000-4-3:2010 ED.3.2

IEC 61000-4-4:2011 ED.2.1

IEC 61000-4-5:2005 ED.2.0

IEC 61000-4-6:2008 ED.3.0

IEC 61000-4-8:2009 ED.2.0

IEC 61000-4-11:2004 ED.2.0 (Not Applicable)

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY :

, DATE: Feb. 29. 20/2

(Celia Chen / Senior Specialist)

6

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

EMISSION					
Standard	Test Type	Result	Remarks		
	Conducted Test	PASS	Meets Class A Limit Minimum passing margin is –4.30 dB at 2.773 MHz		
EN 55022:2010, Class A	Conducted Test (telecom port)	PASS	Meets Class A Limit Minimum passing margin is –2.24 dB at 2.770 MHz		
	Radiated Test (30MHz ~ 2GHz)	PASS	Meets Class A Limit Minimum passing margin is –3.15 dB at 480.06 MHz		

Note: The EUT highest frequency generated **400MHz** and therefore the test frequency range was performed up to 2GHz for radiated emission test.

IMMUNITY (EN 55024:2010)					
Standard	Test Type Result Remarks				
IEC 61000-4-2:2008 ED.2.0	Electrostatic discharge immunity test	PASS	Meets the requirements of Performance Criterion A		
IEC 61000-4-3:2010 ED.3.2	Radiated, radio-frequency, electromagnetic field immunity test	PASS Meets the requirements of Performance Criterion A			
IEC 61000-4-4:2011 ED.2.1	Electrical fast transient / burst immunity test.	PASS	Meets the requirements of Performance Criterion A		
IEC 61000-4-5:2005 ED.2.0	Surge immunity test	PASS	Meets the requirements of Performance Criterion B		
IEC 61000-4-6:2008 ED.3.0	Immunity to conducted disturbances, induced by radio-frequency fields	PASS	Meets the requirements of Performance Criterion A		
IEC 61000-4-8:2009 ED.2.0	Power frequency magnetic field immunity test.	PASS	Meets the requirements of Performance Criterion A		
IEC 61000-4-11:2004 ED.2.0	Voltage dips and short interruptions immunity tests	N/A	Refer to item 3.3		

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

"This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2."

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	150kHz ~ 30MHz	2.41 dB
Conducted Emission at Telecommunication port	150kHz ~ 30MHz	2.9759 dB
Dadiated emissions	30MHz ~ 1GHz	3.24 dB
Radiated emissions	Above 1GHz	3.36 dB

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT Outdoor Dome Network Camera			
MODEL NO.	FD8335H		
POWER SUPPLY	AC adapter (AC 24V) or POE (DC 48V)		
DATA CABLE SUPPLIED	N/A		

NOTE:

- 1. The EUT is an outdoor dome network camera.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

3.2 DESCRIPTION OF TEST MODES

- 1. The EUT was pre-tested under following two kinds of LAN speed:
 - ♦ 10 Mbps
 - ◆ 100 Mbps

The worst emission level was found when the EUT was tested under **100Mbps** LAN speed, therefore only this condition was applied for final test.

2. During the test, the EUT consumes the following power input:

Test Item	Test Mode	Consumes Power from
Conducted, Conducted Test at	Mode 1	AC adapter (AC 24V)
Telecom Port & Radiated Tests	Mode 2	POE (DC 48V)
Immunity Tooto	Mode 1 POE (DC 48V)	
Immunity Tests	(selected the wo	orst mode from radiated test)

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a kind of ITE equipment and, according to the specifications of the manufacturers, must comply with the requirements of the following standards:

EN 55022:2010, Class A

EN 55024:2010

IEC 61000-4-2:2008 ED.2.0

IEC 61000-4-3:2010 ED.3.2

IEC 61000-4-4:2011 ED.2.1

IEC 61000-4-5:2005 ED.2.0

IEC 61000-4-6:2008 ED.3.0

IEC 61000-4-8:2009 ED.2.0

The EUT doesn't connect directly to AC mains lines or EUT consumes DC power and therefore, the standard, **IEC 61000-4-11**, was not performed for the test.

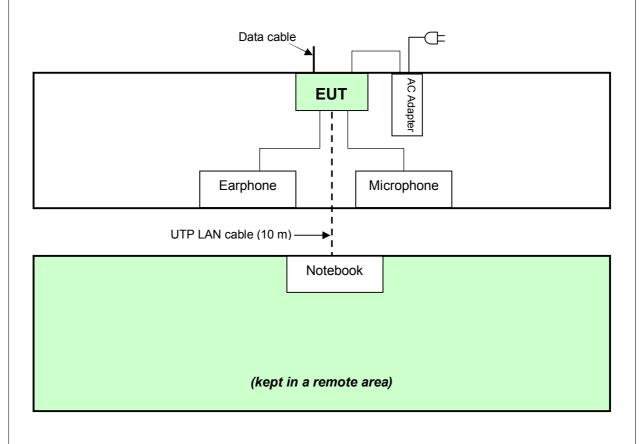
Notes: The above IEC basic standards are applied with latest version if customer has no special requirement

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

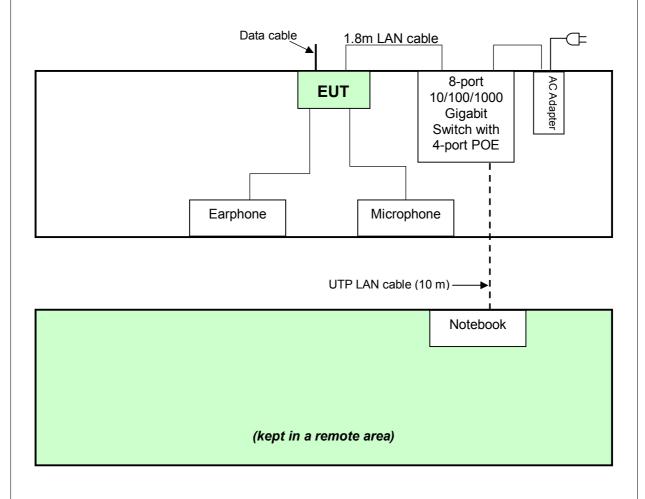
3.4.1 FOR EMISSION TEST

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	MICROPHONE	Labtec	mic-333	N/A	N/A
2	EARPHONE	PHILIPS	SBC HL145	N/A	N/A
3	NOTEBOOK COMPUTER	DELL	PP04X	6C1VY1S	FCC DoC Approved
4	AC Adapter	Actiontop Electronics Co., Ltd.	AT-PSO220	N/A	N/A
5	8-port 10/100/1000 Gigabit Switch with 4-port POE	NETGEAR	GS108P	N/A	N/A

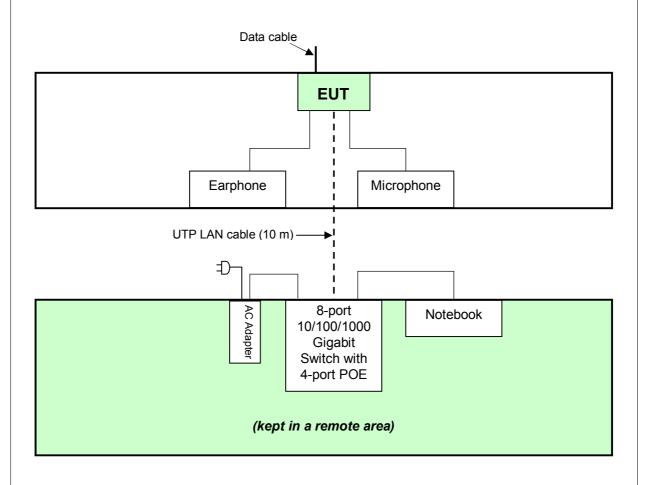

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
4	2.4 m wrapped shielded wire, terminated via drain wire, with 3.5 mm phone plug, w/o
!	core.
2	1.2 m wrapped shielded wire, terminated with 3.5mm phone plug via drain wire, w/o
	core.
3	10m UTP LAN cable.
3	1.8m UTP LAN cable (For Mode 2 only)
	AC I/P: 110V/ 220V, 60Hz/ 50Hz
4	AC O/P: 24V, 2A
	AC 2-pin, Non-Shielded DC Cable (1.8m)
5	AC I/P: 100-240V, 50/60Hz, 1.4A
5	DC O/P: 48.0V, 1.25A

NOTE: (1) All power cords of the above support units are non shielded (1.8m).

- (2) The support units 4 & 5 were provided by client.
- (3) One data cable (provided by client) was connected form EUT to from an open loop cable.



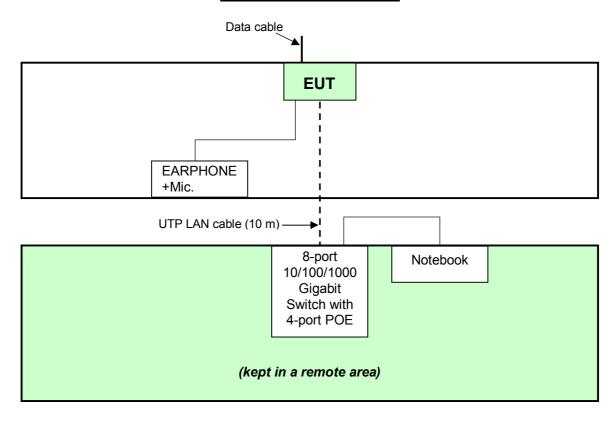
TEST CONFIGURATION - For Mode 1



TEST CONFIGURATION - For Mode 2 (Conducted test only)

TEST CONFIGURATION – For Mode 2 (Conducted Test at Telecom Port & Radiated Test)

3.4.2 FOR IMMUNITY TEST


NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	EARPHONE+Mic.	PHILIPS	SHM3300	N/A	N/A
	NOTEBOOK	DELL	PP04X	9LRVR1S	FCC DoC Approved
2	COMPUTER	DELL			
	8-port 10/100/1000				
3	Gigabit Switch with	NETGEAR	GS108P	N/A	N/A
	4-port POE				

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	1.2 m wrapped shielded wire, terminated with 3.5mm phone plug via drain wire, w/o
I	core.
2	10m UTP LAN cable.
2	1.8m UTP LAN cable
	AC I/P: 100-240V, 50/60Hz, 1.4A
3	DC O/P: 48.0V, 1.25A

NOTE: (1) All power cords of the above support units are non shielded (1.8m).

- (2) The support unit 3 was provided by client.
- (3) One data cable (provided by client) was connected form EUT to from an open loop cable.

TEST CONFIGURATION

4 EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

TEST STANDARD: EN 55022

FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
FREQUENCY (WITZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

NOTE:

- (1) The lower limit shall apply at the transition frequencies.
- (2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

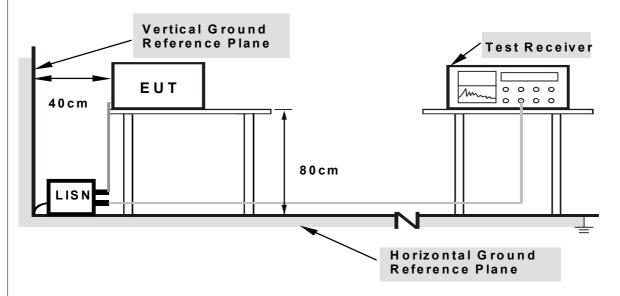
4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ	ESCS 30	100276	Jan. 04, 2012	Jan. 03, 2013
Test Receiver	2000 00	100270	0411. 01, 2012	oun. 66, 2616
ROHDE & SCHWARZ				
Artificial Mains Network	ESH3-Z5	100219	Nov. 24, 2011	Nov. 23, 2012
(for EUT)				
LISN With Adapter	AD10	C10Ada-001	Nov. 24, 2011	Nov. 23, 2012
(for EUT)	ADTO	CTOAda-001	1404. 24, 2011	1404. 23, 2012
ROHDE & SCHWARZ				
Artificial Mains Network	ESH3-Z5	100218	Dec. 08, 2011	Dec. 07, 2012
(for peripherals)				
Software	ADT_Cond_V7. 3.7	NA	NA	NA
Software	ADT_ISN_V7.3. 7	NA	NA	NA
RF cable (JYEBAO)	5D-FB	Cable-C10.01	Feb. 22, 2011	Feb. 21, 2012
SUHNER Terminator				
(For ROHDE &	65BNC-5001	E1-010773	Feb. 26, 2011	Feb. 25, 2012
SCHWARZ LISN)				

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Shielded Room No. 10.
- 3. The VCCI Site Registration No. C-1852.

4.1.3 TEST PROCEDURE


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20dB) were not recorded.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

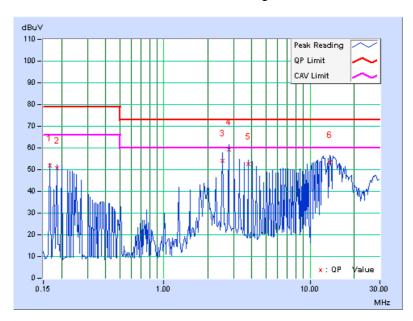
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITIONS

- a. Connected the EUT with adapter or POE switch hub.
- b. Turned on the power of all equipment.
- c. EUT captured video signal.
- d. EUT sent and received messages from/to Server PC (kept in a remote area) via an UTP LAN cable (10 m). (For Mode 1 only)
- e. EUT sent and received messages from/to Server PC (kept in a remote area) via POE switch hub with an UTP LAN cable (10 m). (For Mode 2 only)
- f. EUT sent 1kHz audio signal to earphone.
- g. Steps c-g were repeated.

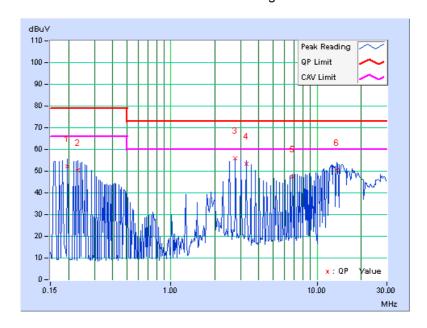


4.1.7 TEST RESULTS (1)

TEST MODE	Mode 1	6DB BANDWIDTH	9 kHz
INPUT POWER (AC ADAPTER)	24Vac	PHASE	Line (L)
ENVIRONMENTAL CONDITIONS	18deg. C, 72% RH	TESTED BY: Brad T	ung

	Freq.	Corr.	Readin	g Value		ssion vel	Lir	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.166	0.13	51.62	13.69	51.75	13.82	79.00	66.00	-27.25	-52.18
2	0.185	0.13	50.55	19.27	50.68	19.40	79.00	66.00	-28.32	-46.60
3	2.523	0.34	53.69	51.07	54.03	51.41	73.00	60.00	-18.97	-8.59
4	2.773	0.36	58.93	55.34	59.29	55.70	73.00	60.00	-13.71	-4.30
5	3.781	0.43	52.25	48.60	52.68	49.03	73.00	60.00	-20.32	-10.97
6	13.605	0.93	52.40	46.62	53.33	47.55	73.00	60.00	-19.67	-12.45

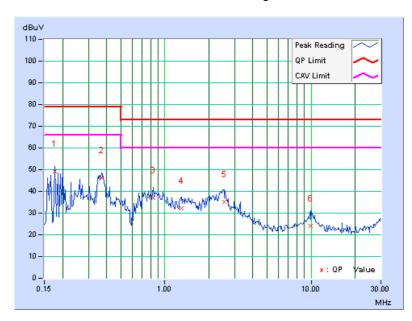
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



TEST MODE	Mode 1	6dB BANDWIDTH	9 kHz
INPUT POWER (AC ADAPTER)	24Vac	PHASE	Neutral (N)
ENVIRONMENTAL CONDITIONS	18deg. C, 72% RH	TESTED BY: Brad T	ung

	Freq.	Corr.	Readin	g Value		ssion vel	Lir	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.197	0.13	52.08	16.28	52.21	16.41	79.00	66.00	-26.79	-49.59
2	0.232	0.14	50.05	15.61	50.19	15.75	79.00	66.00	-28.81	-50.25
3	2.770	0.34	55.54	51.43	55.88	51.77	73.00	60.00	-17.12	-8.23
4	3.277	0.37	53.06	50.36	53.43	50.73	73.00	60.00	-19.57	-9.27
5	6.805	0.50	46.85	43.22	47.35	43.72	73.00	60.00	-25.65	-16.28
6	13.605	0.73	49.47	43.35	50.20	44.08	73.00	60.00	-22.80	-15.92

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

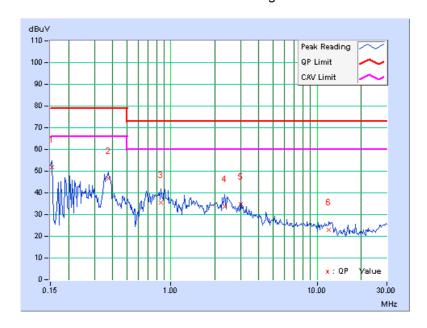


4.1.8 TEST RESULTS (2)

TEST MODE	Mode 2	6DB BANDWIDTH	9 kHz
INPUT POWER (POE)	48Vdc	PHASE	Line (L)
ENVIRONMENTAL CONDITIONS	18deg. C, 72% RH	TESTED BY: Brad T	ung

	Freq.	Corr.	Readin	g Value		ssion vel	Lir	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.177	0.13	49.29	25.40	49.42	25.53	79.00	66.00	-29.58	-40.47
2	0.369	0.20	46.14	39.26	46.34	39.46	79.00	66.00	-32.66	-26.54
3	0.834	0.23	36.66	30.52	36.89	30.75	73.00	60.00	-36.11	-29.25
4	1.297	0.26	32.12	23.17	32.38	23.43	73.00	60.00	-40.62	-36.57
5	2.539	0.34	35.00	26.82	35.34	27.16	73.00	60.00	-37.66	-32.84
6	9.914	0.71	23.28	18.17	23.99	18.88	73.00	60.00	-49.01	-41.12

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



TEST MODE	Mode 2	6dB BANDWIDTH	9 kHz
INPUT POWER (POE)	48Vdc	PHASE	Neutral (N)
ENVIRONMENTAL CONDITIONS	18deg. C, 72% RH	TESTED BY: Brad T	ung

	Freq.	Corr.	Readin	g Value		ssion vel	Lir	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.154	0.13	51.60	29.16	51.73	29.29	79.00	66.00	-27.27	-36.71
2	0.373	0.20	46.52	39.79	46.72	39.99	79.00	66.00	-32.28	-26.01
3	0.853	0.23	35.30	29.96	35.53	30.19	73.00	60.00	-37.47	-29.81
4	2.328	0.31	33.49	22.48	33.80	22.79	73.00	60.00	-39.20	-37.21
5	3.023	0.36	34.64	32.42	35.00	32.78	73.00	60.00	-38.00	-27.22
6	12.094	0.68	22.34	13.41	23.02	14.09	73.00	60.00	-49.98	-45.91

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

4.2 CONDUCTED EMISSION MEASUREMENT AT TELECOMMUNICATION PORTS

4.2.1 LIMIT OF CONDUCTED COMMON MODE DISTURBANCE AT TELECOMMUNICATION PORTS

TEST STANDARD: EN 55022 FOR CLASS A EQUIPMENT

FREQUENCY	Voltage Li	mit (dBuV)	Current Li	mit (dBuA)
(MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	97 – 87	84 - 74	53 – 43	40 – 30
0.5 - 30.0	87	74	43	30

FOR CLASS B EQUIPMENT

FREQUENCY	Voltage Lii	mit (dBuV)	Current Limit (dBuA)		
(MHz)	Quasi-peak Average		Quasi-peak	Average	
0.15 - 0.5	84 - 74	74 - 64	40 – 30	30 – 20	
0.5 - 30.0	74	64	30	20	

NOTE: (1) The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ Test Receiver	ESCS 30	100276	Jan. 04, 2012	Jan. 03, 2013
ROHDE & SCHWARZ Artificial Mains Network (for EUT)	ESH3-Z5	100219	Nov. 24, 2011	Nov. 23, 2012
LISN With Adapter (for EUT)	AD10	C10Ada-001	Nov. 24, 2011	Nov. 23, 2012
ROHDE & SCHWARZ Artificial Mains Network (for peripherals)	ESH3-Z5	100218	Dec. 08, 2011	Dec. 07, 2012
Software	ADT_Cond_V7.3.7	NA	NA	NA
Software	ADT_ISN_V7.3.7	NA	NA	NA
RF cable (JYEBAO)	5D-FB	Cable-C10.01	Feb. 22, 2011	Feb. 21, 2012
SUHNER Terminator (For ROHDE & SCHWARZ LISN)	65BNC-5001	E1-010773	Feb. 26, 2011	Feb. 25, 2012
FCC ISN	F-071115-1057-1	20652	Jan. 30, 2012	Jan. 29, 2013

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Shielded Room No. 10.
- 3. The VCCI Site Registration No. T-1611.

4.2.3 TEST PROCEDURE

For ISN:

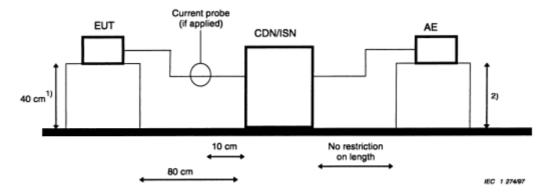
- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room and connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN.
- b. Voltage at the measurement port of the ISN was detected, the reading was corrected by adding the voltage division factor of the ISN, and was compared to the voltage limits.
- c. The disturbance levels and the frequencies of at least six highest disturbances were recorded from each telecommunication port, which comprises the EUT.

For Current Probe:

- a. Current probe shall be placed at 0.1m from the ISN.
- b. Current at the measurement port of the ISN was detected, the reading was corrected by adding the current division factor of the current probe, and was compared to the current limits.
- c. The disturbance levels and the frequencies of at least six highest disturbances were recorded from each telecommunication port, which comprises the EUT
- d. Break the insulation and connect a 150 Ω resistor from the outside surface of the shield to ground and apply a clamp between 150 Ω connection and associated equipment (For STP LAN only).

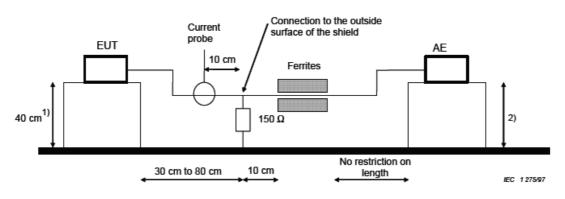
For Voltage Probe:

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room and connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN.
- b. Voltage at the measurement port of the voltage probe was detected, the reading was corrected by adding the voltage division factor of the voltage probe, and was compared to the voltage limits.
- c. The disturbance levels and the frequencies of at least six highest disturbances were recorded from each telecommunication port, which comprises the EUT.


4.2.4 DEVIATION FROM TEST STANDARD

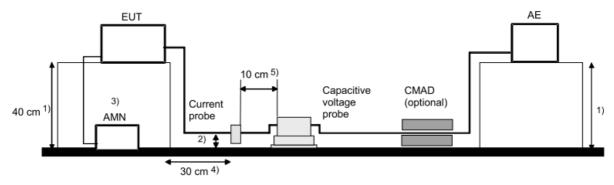
No deviation

4.2.5 TEST SETUP


For ISN & Current Probe (UTP LAN cable):

- AE = Associated equipment EUT = Equipment under test

 1) Distance to the reference groundplane (vertical or horizontal).
- 2) Distance to the reference groundplane is not critical.


For Current Probe (STP LAN cable):

ΑE = Associated equipment EUT = Equipment under test

For Voltage & Current Probe:

IEC 1353/08

AE = Associated equipment EUT = Equipment under test CMAD = Common mode Absorbing Device

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

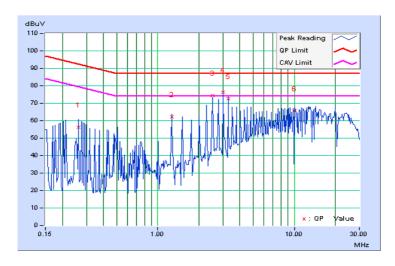
- 1. The methods of conformance testing were selected according to the EN55022:2010, section: 9.6.1 of measurement method using an ISN with a longitudinal conversion loss (LCL) as defined in section: 9.6.2.
- 2. When measurements were performed on a single unscreened balanced pair, an adequate ISN for two wires were used; when performed on unscreened cables containing two balanced pairs, an adequate ISN for four wires were used; when performed on unscreened cables containing four balanced pairs, an adequate ISN for eight wires were used.
- 3. The communication function of EUT was executed and ISN was connected between EUT and associated equipment and the ISN was connected directly to reference ground plane.

4.2.6 EUT OPERATING CONDITIONS

- a. Connected the EUT with adapter or POE switch hub (kept in a remote area).
- b. Turned on the power of all equipment.
- c. EUT captured video signal.
- d. Server PC (kept in a remote area) run "ping.exe" (10% of transmission rate 10Mbps) and "TfGen.exe" (10% of transmission rate 100Mbps) then sent and received messages to/ from EUT via an UTP LAN cable (10m). (For Mode 1 only)
- e. Server PC (kept in a remote area) run "ping.exe" (10% of transmission rate 10Mbps) and "TfGen.exe" (10% of transmission rate 100Mbps) then sent and received messages to/ from EUT via POE switch hub with an UTP LAN cable (10 m). (For Mode 2 only)
- f. EUT sent 1kHz audio signal to earphone.
- g. Steps c-g were repeated.

4.2.7 TEST RESULTS (1)

TEST MODE	Mode 1	6dB BANDWIDTH	9 kHz		
INPUT POWER (AC ADAPTER)	24Vac	PHASE	RJ45 TELECOM PORT (10Mbps)		
ENVIRONMENTAL CONDITIONS	20deg. C, 71% RH	TESTED BY: Brad Tung			

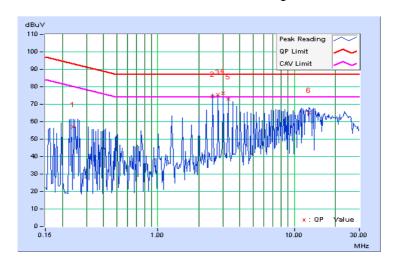

	Freq.	Corr.		ding lue	Emis Le		Lin	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB ((uV)]	[dB (uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	A.V.	Q.P.	A.V.
1	0.263	9.88	46.45	13.58	56.33	23.46	92.33	79.33	-36.00	-55.87
2	1.262	9.56	52.70	52.19	62.26	61.75	87.00	74.00	-24.74	-12.25
3	2.520	9.51	64.78	61.99	74.29	71.50	87.00	74.00	-12.71	-2.50
4	3.023	9.52	66.70	62.12	76.22	71.64	87.00	74.00	-10.78	-2.36
5	3.277	9.53	63.17	60.75	72.70	70.28	87.00	74.00	-14.30	-3.72
6	10.000	9.63	55.85	51.30	65.48	60.93	87.00	74.00	-21.52	-13.07

- Q.P. and AV. are abbreviations of quasi-peak and average individually.
 "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- The emission levels of other frequencies were very low against the limit.

 Margin value = Emission level Limit value

 Correction factor = Insertion loss + Cable loss

 Emission Level = Correction Factor + Reading Value.



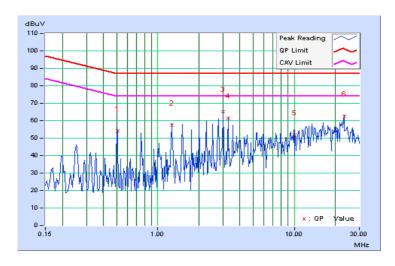
TEST MODE	Mode 1	6dB BANDWIDTH	9 kHz	
INPUT POWER (AC ADAPTER)	24Vac	PHASE	RJ45 TELECOM PORT (100Mbps)	
ENVIRONMENTAL CONDITIONS	20deg. C, 71% RH	TESTED BY: Brad Tung		

	Freq.	Corr.		ding lue	Emis Le		Lin	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB ((uV)]	[dB (uV)]	(di	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	A.V.	Q.P.	A.V.
1	0.240	9.89	47.30	18.84	57.19	28.73	93.10	80.10	-35.91	-51.37
2	2.520	9.51	64.78	62.05	74.29	71.56	87.00	74.00	-12.71	-2.44
3	2.770	9.52	66.15	62.24	75.67	71.76	87.00	74.00	-11.33	-2.24
4	3.023	9.52	66.66	62.06	76.18	71.58	87.00	74.00	-10.82	-2.42
5	3.277	9.53	63.39	60.88	72.92	70.41	87.00	74.00	-14.08	-3.59
6	12.855	9.76	55.37	50.30	65.13	60.06	87.00	74.00	-21.87	-13.94

- Q.P. and AV. are abbreviations of quasi-peak and average individually.
 "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
 The emission levels of other frequencies were very low against the limit.
 Margin value = Emission level Limit value
 Correction factor = Insertion loss + Cable loss
 Emission Level = Correction Factor + Reading Value.

4.2.8 TEST RESULTS (2)

TEST MODE	Mode 2	6dB BANDWIDTH	9 kHz
INPUT POWER (POE)	48Vdc	IPHASE	RJ45 TELECOM PORT (10Mbps)
ENVIRONMENTAL CONDITIONS	20deg. C, 71% RH	TESTED BY: Brad To	ung

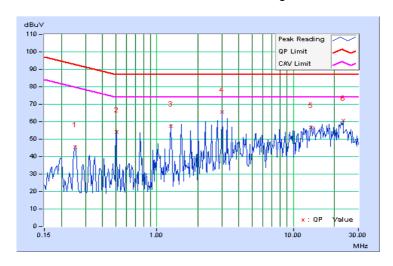

	Freq.	Corr.		ding lue	Emis Le		Lin	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB ((uV)]	[dB (uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	A.V.	Q.P.	A.V.
1	0.505	9.72	44.36	43.77	54.08	53.49	87.00	74.00	-32.92	-20.51
2	1.262	9.56	47.81	47.71	57.37	57.27	87.00	74.00	-29.63	-16.73
3	3.023	9.52	55.83	55.62	65.35	65.14	87.00	74.00	-21.65	-8.86
4	3.277	9.53	51.88	51.74	61.41	61.27	87.00	74.00	-25.59	-12.73
5	10.000	9.63	42.15	31.22	51.78	40.85	87.00	74.00	-35.22	-33.15
6	23.129	10.25	52.48	49.66	62.73	59.91	87.00	74.00	-24.27	-14.09

- Q.P. and AV. are abbreviations of quasi-peak and average individually.
 "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- The emission levels of other frequencies were very low against the limit.

 Margin value = Emission level Limit value

 Correction factor = Insertion loss + Cable loss

 Emission Level = Correction Factor + Reading Value.



TEST MODE	Mode 2	6dB BANDWIDTH	9 kHz	
INPUT POWER (POE)	48Vdc	PHASE	RJ45 TELECOM PORT (100Mbps)	
ENVIRONMENTAL CONDITIONS	20deg. C, 71% RH	TESTED BY: Brad Tung		

	Freq.	Corr.		ding lue	Emis Le		Lin	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB ((uV)]	[dB (uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	A.V.	Q.P.	A.V.
1	0.252	9.88	35.64	35.43	45.52	45.31	92.71	79.71	-47.18	-34.39
2	0.505	9.72	44.38	43.90	54.10	53.62	87.00	74.00	-32.90	-20.38
3	1.261	9.56	47.83	47.75	57.39	57.31	87.00	74.00	-29.61	-16.69
4	3.023	9.52	55.89	55.74	65.41	65.26	87.00	74.00	-21.59	-8.74
5	13.418	9.79	47.03	45.54	56.82	55.33	87.00	74.00	-30.18	-18.67
6	23.129	10.25	50.42	49.72	60.67	59.97	87.00	74.00	-26.33	-14.03

- Q.P. and AV. are abbreviations of quasi-peak and average individually.
 "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
 The emission levels of other frequencies were very low against the limit.
 Margin value = Emission level Limit value
 Correction factor = Insertion loss + Cable loss
 Emission Level = Correction Factor + Reading Value.

4.3 RADIATED EMISSION MEASUREMENT

4.3.1 LIMITS OF RADIATED EMISSION MEASUREMENT

TEST STANDARD: EN 55022

FOR FREQUENCY BELOW 1000 MHz

FREQUENCY	Class A (at 10m)	Class B (at 10m)
(MHz)	dBuV/m	dBuV/m
30 – 230	40	30
230 – 1000	47	37

FOR FREQUENCY ABOVE 1000 MHz

FREQUENCY (GHz)	Class A (dBu	ıV/m) (at 3m)	Class B (dBuV/m) (at 3m)		
FREQUENCY (GHZ)	PEAK	AVERAGE	PEAK	AVERAGE	
1 to 3	76	56	70	50	
3 to 6	80	60	74	54	

NOTE: (1) The lower limit shall apply at the transition frequencies.

- (2) Emission level (dBuV/m) = 20 log Emission level (uV/m).
- (3) All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or used in the device or on which the device or tunes (MHz)	Upper frequency of measurement range (MHz)	
Below 108	1000	
108 – 500	2000	
500 – 1000	5000	
Above 1000	Up to 5 times of the highest frequency or 6 GHz, whichever is less	

4.3.2 TEST INSTRUMENTS

Frequency Range 30MHz~1GHz

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ TEST RECEIVER	ESCS 30	845552/004	Aug. 05, 2011	Aug. 04, 2012
CHASE Bilog Antenna	CBL6111C	2782	Apr. 15, 2011	Apr. 14, 2012
ADT. Turn Table	TT100	0205	NA	NA
ADT. Tower	AT100	0205	NA	NA
Software	ADT_Radiate d_V7.6.15.9.2	NA	NA	NA
ADT RF Switches BOX	EMH-011	1001	Nov. 04, 2011	Nov. 03, 2012
WOKEN RF cable	8D	CABLE-ST2-01	Nov. 04, 2011	Nov. 03, 2012

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Open Site No. 2.
- 3. The VCCI Site Registration No. R-237.
- 4. The FCC Site Registration No. 90424.

Frequency Range above 1GHz

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Spectrum	E4446A	MY46180403	Jun. 22, 2011	Jun. 21, 2012
Agilent Preamplifier	8449B	3008A01201	Mar. 04, 2011	Mar. 03, 2012
MITEQ Preamplifier	AMF-6F-260400- 33-8P	892164	Mar. 04, 2011	Mar. 03, 2012
Schwarzbeck Horn Antenna	BBHA-9170	BBHA917019 0	Oct. 07, 2011	Oct. 06, 2012
Schwarzbeck Horn Antenna	BBHA-9120-D1	D130	May 16, 2011	May 15, 2012
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	ADT_Radiated_V 7.6.15.9.2	NA	NA	NA
SUHNER RF cable	SF102	Cable-CH6	Aug. 19, 2011	Aug. 18, 2012

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Chamber No. 6.
- 3. The Industry Canada Reference No. IC 7450E-6.
- 4. The VCCI Site Registration No. G-257
- 5. The FCC Site Registration No. 447212.

4.3.3 TEST PROCEDURE

<Frequency Range 30MHz ~ 1GHz>

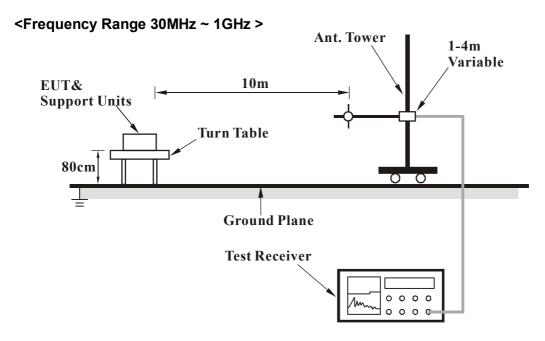
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

NOTE: The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.

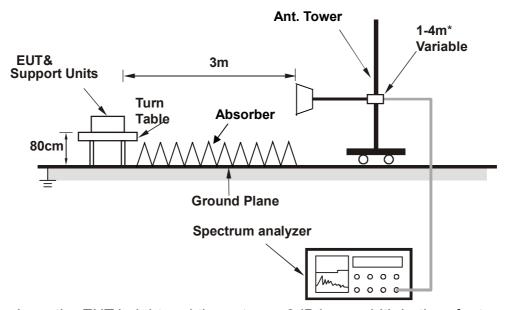
<Frequency Range above 1GHz>

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter Semi-anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna can be varied from one meter-to four meters, the height of adjustment depends on the EUT height and the antenna 3dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

NOTE:


- 1. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak detection at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1GHz.
- 2. For measurement of frequency above 1000 MHz, the EUT was set 3 meters away from the receiver antenna.

4.3.4 DEVIATION FROM TEST STANDARD


No deviation

4.3.5 TEST SETUP

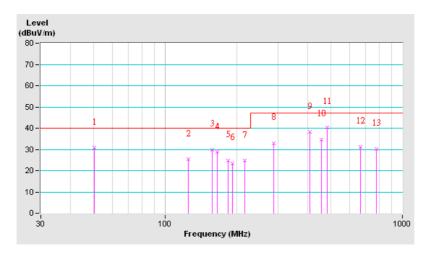
<Frequency Range above 1GHz>

*: depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.3.6 EUT OPERATING CONDITIONS

- a. Connected the EUT with adapter or POE switch hub (kept in a remote area).
- b. Turned on the power of all equipment.
- c. EUT captured video signal.
- d. EUT sent and received messages from/to Server PC (kept in a remote area) via an UTP LAN cable (10 m). (For Mode 1 only)
- e. EUT sent and received messages from/to Server PC (kept in a remote area) via POE switch hub with an UTP LAN cable (10 m). (For Mode 2 only)
- f. EUT sent 1kHz audio signal to earphone.
- g. Steps c-g were repeated.

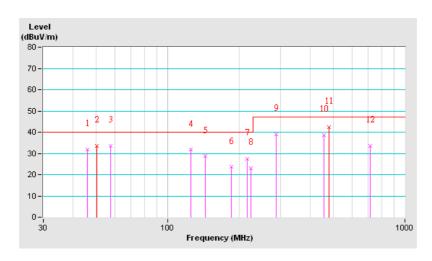


4.3.7 TEST RESULTS (1)

TEST MODE	Mode 1	FREQUENCY RANGE	30-1000 MHz
INPUT POWER (AC ADAPTER)	24Vac	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak, 120 kHz
ENVIRONMENTAL CONDITIONS	18deg. C, 84% RH	TESTED BY: Gary Co	C Lee

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 10 M									
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction		
No.	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor		
	(1011 12)	(dBuV/m)	(ubuv/iii)	(UD)	(m)	(Degree)	(dBuV)	(dB/m)		
1	50.41	30.76 QP	40.00	-9.24	4.00 H	352	22.12	8.64		
2	125.02	25.29 QP	40.00	-14.71	4.00 H	18	12.56	12.73		
3	158.37	30.00 QP	40.00	-10.00	4.00 H	4	18.25	11.75		
4	165.73	28.70 QP	40.00	-11.30	4.00 H	312	17.45	11.25		
5	185.13	24.82 QP	40.00	-15.18	4.00 H	99	14.33	10.49		
6	192.50	23.33 QP	40.00	-16.67	4.00 H	197	12.69	10.64		
7	216.05	24.65 QP	40.00	-15.35	4.00 H	157	12.58	12.07		
8	287.80	32.83 QP	47.00	-14.17	2.90 H	232	16.81	16.02		
9	408.40	38.20 QP	47.00	-8.80	2.30 H	0	18.06	20.14		
10	456.40	34.50 QP	47.00	-12.50	1.31 H	61	12.96	21.54		
11	480.80	40.27 QP	47.00	-6.73	2.35 H	18	18.12	22.15		
12	667.60	31.21 QP	47.00	-15.79	1.00 H	191	6.57	24.64		
13	779.50	30.32 QP	47.00	-16.68	1.00 H	50	3.75	26.57		

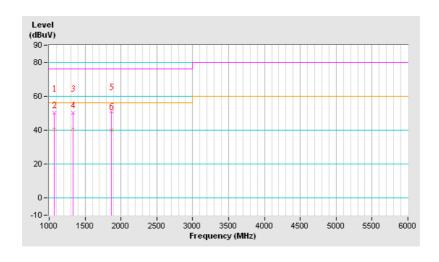
- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.



TEST MODE	Mode 1	FREQUENCY RANGE	30-1000 MHz
INPUT POWER (AC ADAPTER)	24Vac	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak, 120 kHz
ENVIRONMENTAL CONDITIONS	18deg. C, 84% RH	TESTED BY: Gary C	C Lee

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 10 M									
	Freg.	Emission	Limit	Margin	Antenna	Table	Raw	Correction		
No.	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor		
	(1011 12)	(dBuV/m)	(ubu v/III)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)		
1	46.15	31.89 QP	40.00	-8.11	1.00 V	300	21.32	10.57		
2	50.42	33.55 QP	40.00	-6.45	2.77 V	356	24.91	8.64		
3	57.56	33.69 QP	40.00	-6.31	1.60 V	0	26.58	7.11		
4	125.08	31.76 QP	40.00	-8.24	1.00 V	213	19.03	12.73		
5	144.02	28.70 QP	40.00	-11.30	1.00 V	352	16.07	12.63		
6	185.41	23.61 QP	40.00	-16.39	1.00 V	208	13.12	10.49		
7	216.13	27.50 QP	40.00	-12.50	1.00 V	289	15.43	12.07		
8	225.25	23.16 QP	40.00	-16.84	1.00 V	351	10.36	12.80		
9	287.98	39.03 QP	47.00	-7.97	1.00 V	36	23.01	16.02		
10	457.20	38.63 QP	47.00	-8.37	3.14 V	75	17.07	21.56		
11	480.01	42.36 QP	47.00	-4.64	3.85 V	29	20.23	22.13		
12	714.30	33.72 QP	47.00	-13.28	2.17 V	178	8.69	25.03		

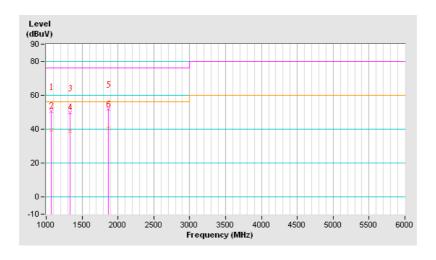
- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.



TEST MODE	Mode 1	FREQUENCY RANGE	1-2GHz
INPUT POWER (AC ADAPTER)	24Vac	DETECTOR FUNCTION & BANDWIDTH	Peak/ Average, 1MHz
ENVIRONMENTAL CONDITIONS	16deg. C, 80% RH	TESTED BY: Chad L	ee

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	1067.48	50.19 PK	76.00	-25.81	1.00 H	17	24.16	26.03		
2	1067.48	40.55 AV	56.00	-15.45	1.00 H	17	14.52	26.03		
3	1332.54	50.14 PK	76.00	-25.86	1.00 H	16	23.11	27.03		
4	1332.54	40.36 AV	56.00	-15.64	1.00 H	16	13.33	27.03		
5	1867.12	51.22 PK	76.00	-24.78	1.00 H	10	22.85	28.37		
6	1867.12	39.86 AV	56.00	-16.14	1.00 H	10	11.49	28.37		

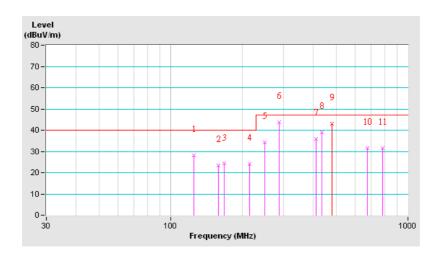
- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.



TEST MODE	Mode 1	FREQUENCY RANGE	1-2GHz
INPUT POWER (AC ADAPTER)	24Vac	DETECTOR FUNCTION & BANDWIDTH	Peak/ Average, 1MHz
ENVIRONMENTAL CONDITIONS	16deg. C, 80% RH	TESTED BY: Chad Lo	ee

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	1066.58	50.79 PK	76.00	-25.21	1.00 V	112	24.77	26.02		
2	1066.58	39.54 AV	56.00	-16.46	1.00 V	112	13.52	26.02		
3	1334.59	49.86 PK	76.00	-26.14	1.14 V	10	22.82	27.04		
4	1334.59	38.72 AV	56.00	-17.28	1.14 V	10	11.68	27.04		
5	1867.12	52.01 PK	76.00	-23.99	1.00 V	182	23.64	28.37		
6	1867.12	40.39 AV	56.00	-15.61	1.00 V	182	12.02	28.37		

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

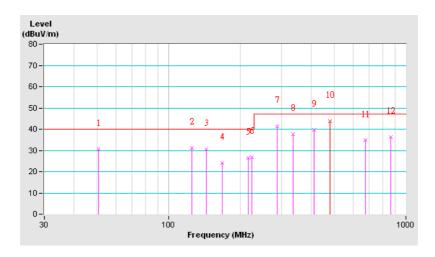


4.3.8 TEST RESULTS (2)

TEST MODE	Mode 2	FREQUENCY RANGE	30-1000 MHz
INPUT POWER (POE)	48Vdc	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak, 120 kHz
ENVIRONMENTAL CONDITIONS	18deg. C, 84% RH	TESTED BY: Gary Co	C Lee

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 10 M									
	Freg.	Emission	Limit	Margin	Antenna	Table	Raw	Correction		
No.	•	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor		
	(MHz)	(dBuV/m)	(ubu v/III)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)		
1	125.02	28.23 QP	40.00	-11.77	4.00 H	69	15.50	12.73		
2	159.07	23.49 QP	40.00	-16.51	4.00 H	38	11.78	11.71		
3	168.06	24.26 QP	40.00	-15.74	4.00 H	353	13.17	11.09		
4	216.00	24.20 QP	40.00	-15.80	4.00 H	337	12.14	12.06		
5	250.04	34.40 QP	47.00	-12.60	2.83 H	149	19.63	14.77		
6	287.35	43.78 QP	47.00	-3.22	2.66 H	41	27.77	16.01		
7	409.20	35.87 QP	47.00	-11.13	1.28 H	260	15.71	20.16		
8	432.80	39.08 QP	47.00	-7.92	1.94 H	183	18.21	20.87		
9	480.02	43.21 QP	47.00	-3.79	2.23 H	282	21.08	22.13		
10	675.35	31.51 QP	47.00	-15.49	1.00 H	354	6.86	24.65		
11	784.80	31.69 QP	47.00	-15.31	1.00 H	14	5.00	26.69		

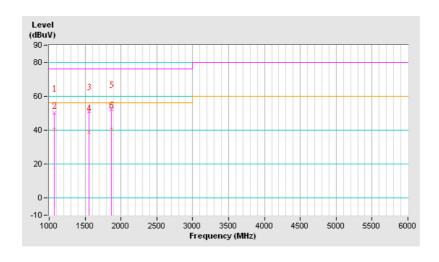
- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.



TEST MODE	Mode 2	FREQUENCY RANGE	30-1000 MHz
INPUT POWER (POE)	48Vdc	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak, 120 kHz
ENVIRONMENTAL CONDITIONS	18deg. C, 84% RH	TESTED BY: Gary Co	C Lee

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 10 M									
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction		
No.	(MHz)	l level l	(dB)	Height	Angle	Value	Factor			
	(1011 12)	(dBuV/m)	(ubu v/III)	(UD)	(m)	(Degree)	(dBuV)	(dB/m)		
1	50.59	30.56 QP	40.00	-9.44	1.00 V	295	21.96	8.60		
2	125.52	31.18 QP	40.00	-8.82	1.00 V	25	18.45	12.73		
3	144.01	30.57 QP	40.00	-9.43	1.00 V	60	17.94	12.63		
4	168.06	24.20 QP	40.00	-15.80	1.00 V	343	13.11	11.09		
5	216.13	26.44 QP	40.00	-13.56	1.00 V	76	14.37	12.07		
6	225.13	26.89 QP	40.00	-13.11	1.00 V	30	14.10	12.79		
7	287.37	41.28 QP	47.00	-5.72	1.00 V	336	25.27	16.01		
8	335.92	37.63 QP	47.00	-9.37	1.00 V	18	20.11	17.52		
9	409.20	39.75 QP	47.00	-7.25	1.27 V	24	19.59	20.16		
10	480.06	43.85 QP	47.00	-3.15	1.73 V	168	21.72	22.13		
11	675.05	34.78 QP	47.00	-12.22	2.47 V	210	10.13	24.65		
12	865.01	36.40 QP	47.00	-10.60	3.76 V	8	8.37	28.03		

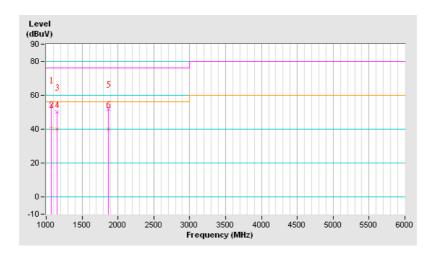
- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.



TEST MODE	Mode 2	FREQUENCY RANGE	1-2GHz	
INPUT POWER (POE)	48Vdc	DETECTOR FUNCTION & BANDWIDTH	Peak/ Average, 1MHz	
ENVIRONMENTAL CONDITIONS	16deg. C, 80% RH	TESTED BY: Chad Lee		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1067.50	50.13 PK	76.00	-25.87	1.00 H	143	24.10	26.03
2	1067.50	40.25 AV	56.00	-15.75	1.00 H	143	14.22	26.03
3	1552.29	50.96 PK	76.00	-25.04	1.00 H	114	23.25	27.71
4	1552.29	38.74 AV	56.00	-17.26	1.00 H	114	11.03	27.71
5	1867.17	52.44 PK	76.00	-23.56	1.00 H	266	24.07	28.37
6	1867.17	40.59 AV	56.00	-15.41	1.00 H	266	12.22	28.37

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.



TEST MODE	Mode 2	FREQUENCY RANGE	1-2GHz
INPUT POWER (POE)	48Vdc	DETECTOR FUNCTION & BANDWIDTH	Peak/ Average, 1MHz
ENVIRONMENTAL CONDITIONS	16deg. C, 80% RH	TESTED BY: Chad Lee	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1067.44	54.36 PK	76.00	-21.64	1.00 V	16	28.33	26.03
2	1067.44	40.25 AV	56.00	-15.75	1.00 V	16	14.22	26.03
3	1152.48	50.18 PK	76.00	-25.82	1.03 V	184	23.86	26.32
4	1152.48	39.88 AV	56.00	-16.12	1.03 V	184	13.56	26.32
5	1867.83	51.77 PK	76.00	-24.23	1.00 V	15	23.40	28.37
6	1867.83	40.03 AV	56.00	-15.97	1.00 V	15	11.66	28.37

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

5 IMMUNITY TEST

5.1 GENERAL DESCRIPTION

Product Standard:	EN 55024:2010	
	IEC 61000-4-2	Electrostatic Discharge – ESD: 8kV air discharge, 4kV Contact discharge, Performance Criterion B
	IEC 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test – RS: 80-1000 MHz, 3V/m, 80% AM (1kHz), Performance Criterion A
	IEC 61000-4-4	Electrical Fast Transient/Burst - EFT AC Power line: 1kV, DC Power line: 0.5kV Signal line: 0.5kV Performance Criterion B
Basic Standard, specification requirement, and Performance Criteria:	IEC 61000-4-5	Surge Immunity Test: 1.2/50 us Open Circuit Voltage, 8 /20 us Short Circuit Current, AC Power Line: line to line 1 kV, line to earth 2kV DC Power Line: line to earth 0.5kV Performance Criterion B Signal line: i) 1 kV without primary protectors, Performance Criteria C ii) 4 kV with primary protectors, Performance Criterion C
	IEC 61000-4-6	Conducted Radio Frequency Disturbances Test – CS: 0.15-80 MHz, 3Vrms, 80% AM, 1kHz, Performance Criterion A
	IEC 61000-4-8	Power Frequency Magnetic Field Test, 50 Hz, 1A/m, Performance Criterion A

5.2 GENERAL PERFORMANCE CRITERIA DESCRIPTION

According to Clause 7.1 of EN 55024:2010 standard, the following describes the general performance criteria.

CRITERION A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
CRITERION B	After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomenon below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.
OKIT LIKION B	During the test, degradation of performance is allowed. However, no change of operating state if stored data is allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
CRITERION C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions.
	Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

5.3 EUT OPERATING CONDITION

- a. Connected the EUT with POE switch hub.
- b. Turned on the power of all equipment.
- c. EUT captured video signal.
- d. EUT sent and received messages from/to Server PC (kept in a remote area) via POE switch hub with an UTP LAN cable (10 m).
- e. EUT sent 1kHz audio signal to earphone.
- f. Steps c-f were repeated.

5.4 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)

5.4.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-2 **Discharge Impedance:** 330 ohm / 150 pF

Discharge Voltage: Air Discharge : 2, 4, 8kV (Direct)

Contact Discharge: 2, 4kV (Direct/Indirect)

Polarity: Positive & Negative

Number of Discharge: Air Discharge: Min. 20 times at each test point

Contact Discharge: Min. 200 times in total

Discharge Mode: Single Discharge Discharge Period: 1 second minimum

5.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
KeyTek, ESD Simulator	MZ-15/EC	0504259	May 30, 2011	May 29, 2012

NOTE: 1. The test was performed in ESD Room No. 1.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.4.3 TEST PROCEDURE

The discharges shall be applied in two ways:

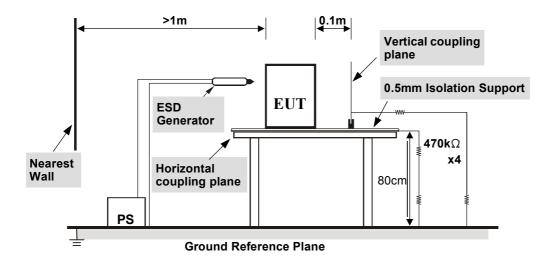
a. Contact discharges to the conductive surfaces and coupling planes:

The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the horizontal coupling plane. The remaining three test points shall each receive at least 50 direct contact discharges. If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

b. Air discharges at slots and apertures and insulating surfaces:

On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

The basic test procedure was in accordance with IEC 61000-4-2:


- Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator was positioned horizontally at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the **V**ertical **C**oupling **P**lane in sufficiently different positions that the four faces of the EUT were completely illuminated. The **VCP** (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

5.4.4 DEVIATION FROM TEST STANDARD

No deviation

5.4.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the **Ground Reference P**lane. The **GRP** consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A **H**orizontal **C**oupling **P**lane (1.6m x 0.8m) was placed on the table and attached to the **GRP** by means of a cable with $940k\Omega$ total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were placed on the **HCP** and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

5.4.6 TEST RESULTS

TEST MODE	l Mode 1	INPUT POWER (POE)	48Vdc
ENVIRONMENTAL	20deg. C, 48%RH,	TESTED BY: Ryan Chen	
CONDITIONS	1005hPa		

TEST RESULTS OF DIRECT APPLICATION					
Discharge	Dolority	Test Point	Contact	Air	Performance
Level (kV)	Polarity	Test Pollit	Discharge	Discharge	Criterion
2, 4	+/-	1, 2	Note	N/A	Α
2, 4, 8	+/-	3	N/A	Note	А

Description of test point: Please refer to ESD test photo for representative mark only.

TEST RESULTS OF INDIRECT APPLICATION						
Discharge Level (kV)	Polarity	Test Point	Horizontal Coupling Plane	Vertical Coupling Plane	Performance Criterion	
2, 4	+/-	1 ~ 4	Note	Note	А	

Description of test point:

- 1. Left side
- 2. Right side
- 3. Front side
- 4. Rear side

NOTE: There was no change compared with initial operation during the test.

5.5 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY TEST (RS)

5.5.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-3

Frequency Range: 80 MHz - 1000 MHz

Field Strength: 3 V/m

Modulation: 1 kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of fundamental Polarity of Antenna: Horizontal and Vertical

Antenna Height: 1.5 m

Dwell Time: 3 seconds

Report No.: CE120112D02 56 Report Format Version 4.1.0

5.5.2 TEST INSTRUMENTS

Agilent Signal Generator E8257D MY48050465 Jun. 11, 2011 Jun. 10, 2012 PRANA RF Amplifier AP32DP280 0811-894 NA NA AR RF Amplifier 150W1000M3 306601 NA NA AR RF Amplifier 150W1000M3 306601 NA NA AR RF Amplifier 100S1G4M3 0326094 NA NA AR RF Amplifier 100S1G4M3 0329249 NA NA AR Controller SC1000M3 305910 NA NA Radisense CTR1001A RadiSense 6 06D00232SN 06D00232SN 039 Jul. 15, 2011 Jul. 14,2012 Radisense Electric CTR1002A 08D00057SN 0-07 Jul. 15, 2011 Jul. 14,2012 Radisense Electric CTR1002A 08D00057SN 0-07 Jul. 14, 2011 Jul. 05, 2012 Field Sensor BOONTON 4232A 10180 Jul. 14, 2011 Jul. 13, 2012 BOONTON Power Sensor 51011-EMC 34153 Jul. 15, 2011 Jul. 14, 2012 BOONTON Power Sensor AT6080 <t< th=""><th>DESCRIPTION & MANUFACTURER</th><th>MODEL NO.</th><th>SERIAL NO.</th><th>CALIBRATED DATE</th><th>CALIBRATED UNTIL</th></t<>	DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
RF Amplifier AP32DP280 0811-894 NA NA AR RF Amplifier 150W1000M3 306601 NA NA AR RF Amplifier 35S4G8AM4 0326094 NA NA AR RF Amplifier 100S1G4M3 0329249 NA NA AR Controller SC1000M3 305910 NA NA Radisense CTR1001A RadiSense 6 06D00232SN 06D00232SN 039 Jul. 15, 2011 Jul. 14,2012 Radisense CTR1002A 06D00232SN 06D00232SN 039 Jul. 15, 2011 Jul. 14,2012 Radisense CTR1002A 06D00232SN 06D00232SN 039 Jul. 15, 2011 Jul. 14,2012 Radisense CTR1002A 06D00232SN 06D00232SN 06D0023SN 		E8257D	MY48050465	Jun. 11, 2011	Jun. 10, 2012
AR RF Amplifier 35S4G8AM4 0326094 NA NA AR RF Amplifier 100S1G4M3 0329249 NA NA AR Controller SC1000M3 305910 NA NA Radisense CTR1001A RadiSense 6 06D00232SN 06D00232SN 039 Jul. 15, 2011 Jul. 14,2012 Radisense Electric Field Sensor CTR1002A 08D00057SN 0-07 Jun. 06, 2011 Jun. 05, 2012 Field Sensor BOONTON Power 4232A 10180 Jun. 14, 2011 Jun. 13, 2012 BOONTON Power Sensor 51011-EMC 34152 Jun. 14, 2011 Jun. 13, 2012 BOONTON Power Sensor 51011-EMC 34153 Jun. 15, 2011 Jun. 14, 2012 AR Log-Periodic Antenna AT6080 0329465 NA NA EMCO BiconiLog Antenna 3141 1001 NA NA AR High Gain Antenna AT4002A 306533 NA NA AR High Gain Horn Antenna AT4010 0329800 NA NA Chance Most Chamber (9x5x3		AP32DP280	0811-894	NA	NA
AR RF Amplifier 100S1G4M3 0329249 NA NA AR Controller SC1000M3 305910 NA NA Radisense Electric Field Sensor CTR1001A RadiSense 6 06D00232SN O39 Jul. 15, 2011 Jul. 14,2012 Radisense Electric Field Sensor CTR1002A 08D00057SN O-07 Jun. 06, 2011 Jun. 05, 2012 BOONTON RF Voltage Meter BOONTON Power Sensor 4232A 10180 Jun. 14, 2011 Jun. 13, 2012 BOONTON Power Sensor 51011-EMC 34152 Jun. 14, 2011 Jun. 13, 2012 BOONTON Power Sensor 51011-EMC 34153 Jun. 15, 2011 Jun. 14, 2012 AR Log-Periodic Antenna AT6080 0329465 NA NA AM NA NA NA NA BIGOON JOR Power Sensor AT6080 0329465 NA NA AR Log-Periodic Antenna AT6080 0329465 NA NA AR High Gain Antenna AT4002A 306533 NA NA AR High Gain Horn Antenna AT4010 0329800 NA NA <td>AR RF Amplifier</td> <td>150W1000M3</td> <td>306601</td> <td>NA</td> <td>NA</td>	AR RF Amplifier	150W1000M3	306601	NA	NA
AR Controller SC1000M3 305910 NA NA Radisense Electric Field Sensor CTR1001A RadiSense 6 06D00232SN O39 Jul. 15, 2011 Jul. 14,2012 Radisense Electric Field Sensor CTR1002A 08D00057SN O-07 Jun. 06, 2011 Jun. 05, 2012 Field Sensor 4232A 10180 Jun. 14, 2011 Jun. 13, 2012 BOONTON Power Sensor 51011-EMC 34152 Jun. 14, 2011 Jun. 13, 2012 BOONTON Power Sensor 51011-EMC 34153 Jun. 15, 2011 Jun. 14, 2012 AR Log-Periodic AT6080 0329465 NA NA Antenna AT6080 0329465 NA NA EMCO BiconiLog Antenna 3141 1001 NA NA AR High Gain Antenna AT4002A 306533 NA NA AR High Gain Horn Antenna AT4010 0329800 NA NA AR High Gain Horn Antenna AT4010 RS-002 Feb. 10, 2012 Feb. 09, 2013	AR RF Amplifier	35S4G8AM4	0326094	NA	NA
Radisense Electric Field Sensor CTR1001A RadiSense 6 06D00232SN 06D00232SN 039 Jul. 15, 2011 Jul. 14,2012 Radisense Electric Field Sensor CTR1002A 08D00057SN 0-07 Jun. 06, 2011 Jun. 05, 2012 Field Sensor BOONTON RF Voltage Meter BOONTON Power Sensor 4232A 10180 Jun. 14, 2011 Jun. 13, 2012 BOONTON Power Sensor 51011-EMC 34152 Jun. 14, 2011 Jun. 13, 2012 BOONTON Power Sensor 51011-EMC 34153 Jun. 15, 2011 Jun. 14, 2012 AR Log-Periodic Antenna AT6080 0329465 NA NA EMCO BiconiLog Antenna 3141 1001 NA NA AR High Gain Antenna AT4002A 306533 NA NA AR High Gain Horn Antenna AT4010 0329800 NA NA CHANCE MOST Full Anechoic Chamber (9x5x3m) Chance Most RS-002 Feb. 10, 2012 Feb. 09, 2013	AR RF Amplifier	100S1G4M3	0329249	NA	NA
Radisense Electric Field Sensor CTR1001A RadiSense 6 O-02 06D00232SN 039 Jul. 15, 2011 Jul. 14,2012 Radisense Electric Field Sensor CTR1002A 08D00057SN 0-07 Jun. 06, 2011 Jun. 05, 2012 BOONTON RF Voltage Meter BOONTON Power Sensor 4232A 10180 Jun. 14, 2011 Jun. 13, 2012 BOONTON Power Sensor 51011-EMC 34152 Jun. 14, 2011 Jun. 13, 2012 BOONTON Power Sensor 51011-EMC 34153 Jun. 15, 2011 Jun. 14, 2012 AR Log-Periodic Antenna AT6080 0329465 NA NA EMCO BiconiLog Antenna 3141 1001 NA NA AR High Gain Antenna AT4002A 306533 NA NA AR High Gain Horn Antenna AT4010 0329800 NA NA CHANCE MOST Full Anechoic Chamber (9x5x3m) Chance Most RS-002 Feb. 10, 2012 Feb. 09, 2013	AR Controller	SC1000M3	305910	NA	NA
Electric CTR1002A 08D00057SN O-07 Jun. 06, 2011 Jun. 05, 2012 Field Sensor 4232A 10180 Jun. 14, 2011 Jun. 13, 2012 BOONTON Power Sensor 51011-EMC 34152 Jun. 14, 2011 Jun. 13, 2012 BOONTON Power Sensor 51011-EMC 34153 Jun. 15, 2011 Jun. 14, 2012 AR Log-Periodic AT6080 0329465 NA NA Antenna AT6080 0329465 NA NA EMCO BiconiLog Antenna 3141 1001 NA NA AR High Gain Antenna AT4002A 306533 NA NA AR High Gain Horn Antenna AT4010 0329800 NA NA CHANCE MOST Full Anechoic Chamber (9x5x3m) Chance Most RS-002 Feb. 10, 2012 Feb. 09, 2013	Electric		O-02 06D00232SN	Jul. 15, 2011	Jul. 14,2012
RF Voltage Meter 4232A 10180 Jun. 14, 2011 Jun. 13, 2012 BOONTON Power Sensor 51011-EMC 34152 Jun. 14, 2011 Jun. 13, 2012 BOONTON Power Sensor 51011-EMC 34153 Jun. 15, 2011 Jun. 14, 2012 AR Log-Periodic AT6080 0329465 NA NA Antenna AR NA NA NA BiconiLog Antenna AT4002A 306533 NA NA AR High Gain Antenna AT4010 0329800 NA NA AR High Gain Horn Antenna AT4010 0329800 NA NA CHANCE MOST Full Anechoic Chamber (9x5x3m) Chance Most RS-002 Feb. 10, 2012 Feb. 09, 2013	Electric	CTR1002A		Jun. 06, 2011	Jun. 05, 2012
Sensor 51011-EMC 34152 Jun. 14, 2011 Jun. 13, 2012 BOONTON Power Sensor 51011-EMC 34153 Jun. 15, 2011 Jun. 14, 2012 AR Log-Periodic AT6080 0329465 NA NA Antenna EMCO 3141 1001 NA NA AR High Gain Antenna AT4002A 306533 NA NA AR High Gain Horn AT4010 0329800 NA NA Antenna CHANCE MOST Chance Most RS-002 Feb. 10, 2012 Feb. 09, 2013 Chamber (9x5x3m) Chance Most RS-002 Feb. 10, 2012 Feb. 09, 2013		4232A	10180	Jun. 14, 2011	Jun. 13, 2012
Sensor 51011-EMC 34153 Jun. 15, 2011 Jun. 14, 2012 AR Log-Periodic AT6080 0329465 NA NA Antenna EMCO 3141 1001 NA NA AR High Gain Antenna AT4002A 306533 NA NA AR High Gain Horn AT4010 0329800 NA NA Antenna CHANCE MOST Chance Most RS-002 Feb. 10, 2012 Feb. 09, 2013 Chamber (9x5x3m) Chance Most RS-002 Feb. 10, 2012 Feb. 09, 2013		51011-EMC	34152	Jun. 14, 2011	Jun. 13, 2012
Log-Periodic Antenna AT6080 0329465 NA NA EMCO BiconiLog Antenna 3141 1001 NA NA AR High Gain Antenna AT4002A 306533 NA NA AR High Gain Horn Antenna AT4010 0329800 NA NA CHANCE MOST Full Anechoic Chamber (9x5x3m) Chance Most RS-002 Feb. 10, 2012 Feb. 09, 2013		51011-EMC	34153	Jun. 15, 2011	Jun. 14, 2012
BiconiLog Antenna 3141 1001 NA NA AR High Gain Antenna AT4002A 306533 NA NA AR High Gain Horn Antenna AT4010 0329800 NA NA CHANCE MOST Full Anechoic Chamber (9x5x3m) Chance Most RS-002 RS-002 Feb. 10, 2012 Feb. 09, 2013	Log-Periodic	AT6080	0329465	NA	NA
High Gain Antenna AT4002A 306533 NA NA AR High Gain Horn AT4010 0329800 NA NA Antenna CHANCE MOST Full Anechoic Chamber (9x5x3m) Chamber (9x5x3m) Feb. 10, 2012 Feb. 09, 2013		3141	1001	NA	NA
High Gain Horn AT4010 0329800 NA NA Antenna CHANCE MOST Full Anechoic Chance Most RS-002 Feb. 10, 2012 Feb. 09, 2013 Chamber (9x5x3m)		AT4002A	306533	NA	NA
Full Anechoic Chance Most RS-002 Feb. 10, 2012 Feb. 09, 2013 Chamber (9x5x3m)	High Gain Horn	AT4010	0329800	NA	NA
Software ADT_RS_V7.6 NA NA NA	Full Anechoic	Chance Most	RS-002	Feb. 10, 2012	Feb. 09, 2013
	Software	ADT_RS_V7.6	NA	NA	NA

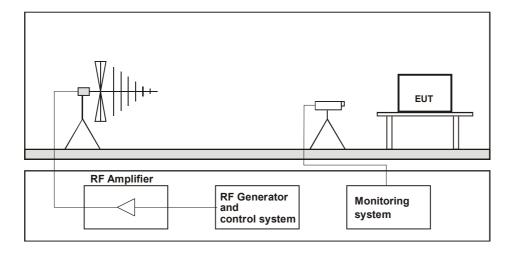
NOTE: 1. The test was performed in RS Room No.2.

^{2.} The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

^{3.} The transmit antenna was located at a distance of 3 meters from the EUT.

5.5.3 TEST PROCEDURE

The test procedure was in accordance with IEC 61000-4-3


- a. The testing was performed in a fully-anechoic chamber.
- b. The frequency range is swept from 80 MHz to 1000 MHz with the signal 80% amplitude modulated with a 1kHz sine wave.
- c. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to respond, but shall in no case be less than 0,5s.
- d. The field strength level was 3V/m.
- e. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

5.5.4 DEVIATION FROM TEST STANDARD

No deviation

5.5.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

5.5.6 TEST RESULTS

TEST MODE	Mode 1	INPUT POWER (POE)	48Vdc
ENVIRONMENTAL CONDITIONS	20deg. C, 64%RH	TESTED BY: Ryan Chen	

Frequency (MHz)	Polarity	Azimuth	Field Strength (V/m)	Observation	Performance Criterion
	V & H	0	3		
00 1000	V & H	90	3	Note	•
80 - 1000	V & H	180	3	Note	A
	V & H	270	3		

NOTE: There was no change compared with the initial operation during the test.

5.6 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (EFT)

5.6.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-4
Test Voltage: Power Line: N/A

Signal/Control Line: 0.5 kV

Polarity: Positive & Negative

Impulse Frequency: 100 kHz: only for signal lines of xDSL equipment

5 kHz: except for xDSL equipment

Impulse Waveshape:5/50 nsBurst Duration:15 msBurst Period:300 msTest Duration:1 min.

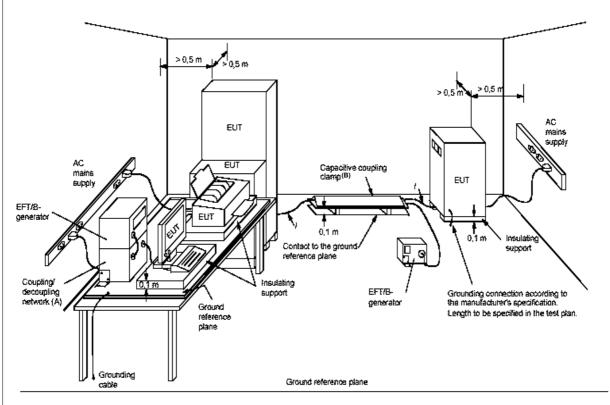
5.6.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Haefely, EFT Generator	PEFT 4010	154954	Apr. 19, 2011	Apr. 18, 2012
Haefely,Capacitive Clamp	IP4A	155173	NA	NA

NOTE: 1. The test was performed in EFT Room

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.6.3 TEST PROCEDURE


- a. Both positive and negative polarity discharges were applied.
- b. The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 0.5 meter ± 0.05 meter.
- c. The duration time of each test seguential was 1 minute.
- d. The transient/burst waveform was in accordance with IEC 61000-4-4, 5/50ns.

5.6.4 DEVIATION FROM TEST STANDARD

No deviation

5.6.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

I: length between clamp and the EUT to be tested (should be 0.5 ± 0.05 m)

(A): location for supply line coupling

(B): location for signal lines coupling

NOTE:

EUTs, whether stationary floor-mounted or table top, and equipment designed to be mounted in other configurations, shall be placed on a ground reference plane and shall be insulated from it by an insulating support $0.1 \text{ m} \pm 0.01 \text{ m}$ thick. A minimum distance of 0.5 m was provided between the EUT and the walls of the laboratory or any other metallic structure.

5.6.6 TEST RESULTS

TEST MODE	l Mode 1	INPUT POWER (POE)	48Vdc
ENVIRONMENTAL CONDITIONS	21deg. C, 64%RH	TESTED BY: Ryan	Chen

Test Point	Polarity	Test Level (kV)	Observation	Performance Criterion
Cat. 5 Line	+/-	0.5	Note	Α
Digital Line (DI/DO)	+/-	0.5	Note	Α

NOTE: There was no change compared with the initial operation during the test.

5.7 SURGE IMMUNITY TEST

5.7.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-5

Wave-Shape: Combination Wave for power lines

1.2/50 us Open Circuit Voltage 8 /20 us Short Circuit Current 10/700 us Wave for signal lines 10/700 us Open Circuit Voltage

Test Voltage: Power Line : N/A

Signal line: 0.5, 1kV

Surge Input/Output: Digital Line, Cat. 5 Line
Generator Source 2 ohm between networks

Impedance: 12 ohm between network and ground

Polarity: Positive/Negative Pulse Repetition Rate: 1 time / 30 sec.

Number of Tests: 5 positive and 5 negative at selected points

5.7.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
NoiseKen	LSS-15AX-C3	LSS1071126	Oct. 24, 2011	Oct. 23, 2012
Surge Generator	Α	L331071120	Oct. 24, 2011	Oct. 23, 2012
Coupling	CDN-UTP8	028	Jul. 18, 2011	Jul. 17, 2012
Decoupling Network	CDN-01P6	020	Jul. 10, 2011	Jul. 17, 2012
Surge Cable	WE-4	SU1Cab-001	NA	NA
Surge Adapter WONPRO	WA-9	SU1ADA-002	NA	NA

NOTE: 1. The test was performed in Surge Room.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

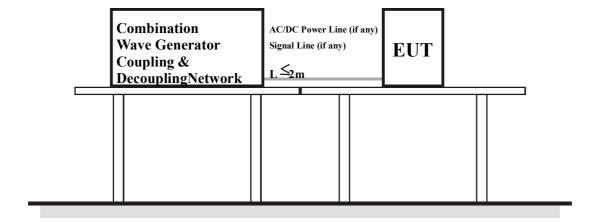
5.7.3 TEST PROCEDURE

a. For EUT power supply:

The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

b. For test applied to unshielded unsymmetrically operated interconnection lines of EUT:

The surge is applied to the lines via the capacitive coupling. The coupling / decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).


 For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT:

The surge is applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor cannot be specified. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

5.7.4 DEVIATION FROM TEST STANDARD

No deviation

5.7.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

5.7.6 TEST RESULTS

TEST MODE	l Mode 1	INPUT POWER (POE)	48Vdc
ENVIRONMENTAL CONDITIONS	23deg. C, 62% RH	TESTED BY: Evan	Chang

VOLTAGE (kV)	TEST POINT	POLARITY	OBSERVATION	PERFORMANCE CRITERION
0.5, 1	Digital Line (DI/DO)	+/-	Note (2)	В
0.5.1	Cat. 5 Line	+	Note (1)	Α
0.5, 1 Cat. 5 Lin	Cat. 5 Line	-	Note (2)	В

NOTE: (1) There was no change compared with the initial operation during the test.

(2) The transmission of data from LAN port was paused 5 seconds during the test, but self-recoverable after the test.

5.8 IMMUNITY TO CONDUCTED DISTURBANCES INDUCED BY RF FIELDS (CS)

5.8.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-6

Frequency Range: 0.15 MHz - 80 MHz

Field Strength: 3 V_{r.m.s.}

Modulation: 1kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of fundamental

Coupled Cable: Signal Line

Coupling Device: CDN-T8, EM-Clamp

Report No.: CE120112D02 67 Report Format Version 4.1.0

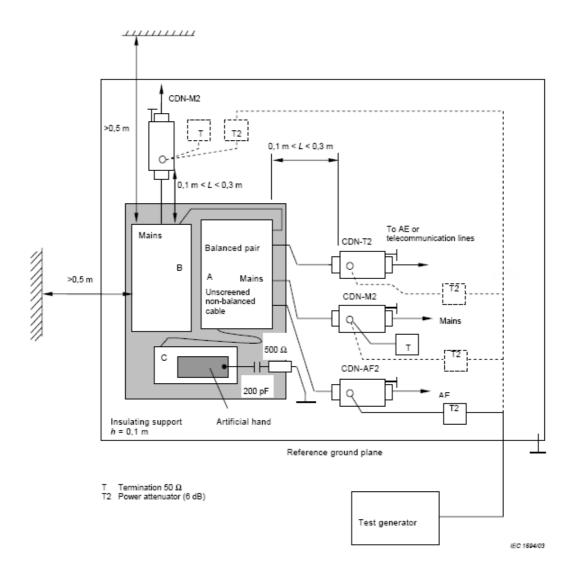
5.8.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ Signal Generator	SMY01	841104/033	Nov. 23, 2011	Nov. 22, 2012
Digital Sweep Function Generator	8120	984801	NA	NA
AR Power Amplifier	75A250AM1	312196	NA	NA
FCC Coupling Decoupling Network	FCC-801-M3 -25A	48	Aug. 19, 2011	Aug. 18, 2012
FCC Coupling Decoupling Network	FCC-801-M3 -25A	01022	Feb. 25, 2011	Feb. 24, 2012
FCC Coupling Decoupling Network	FCC-801-M2 -16A	01047	Aug. 19, 2011	Aug. 18, 2012
FISCHER CUSTOM COMMUNICATIONS EM Injection Clamp	FCC-203I	50	NA	NA
FISCHER CUSTOM COMMUNICATIONS Current Injection Clamp	F-120-9A	361	NA	NA
EM TEST Coupling Decoupling Network	CDN M1/32A	306508	Feb. 25, 2011	Feb. 24, 2012
FCC Coupling Decoupling Network	FCC-801-T8	02038	Feb. 25, 2011	Feb. 24, 2012
FCC Coupling Decoupling Network	FCC-801-T4	02031	Feb. 25, 2011	Feb. 24, 2012
FCC Coupling Decoupling Network	FCC-801-T2	02021	Feb. 25, 2011	Feb. 24, 2012
R&S Power Sensor	NRV-Z5	837878/038	Nov. 15, 2011	Nov. 14, 2012
R&S Power Sensor	NRV-Z5	837878/039	Nov. 14, 2011	Nov. 13, 2012
R&S Power Meter	NRVD	837794/040	Nov. 15, 2011	Nov. 14, 2012
Software	ADT_CS_V7 .4.2	NA	NA	NA

NOTE: 1. The test was performed in CS Room No. 1.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.8.3 TEST PROCEDURE


- a. The EUT shall be tested within its intended operating and climatic conditions.
- b. An artificial hand was placed on the hand-held accessory and connected to the ground reference plane.
- c. One of the CDNs not used for injection was terminated with 50Ω , providing only one return path. All other CDNs were coupled as decoupling networks.
- d. The frequency range is swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal is modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. Where the frequency is swept incrementally, the step size shall not exceed 1 % of the preceding frequency value.
- e. The dwell time of the amplitude modulated carrier at each frequency shall not be less than the time necessary for the EUT to be exercised and to respond, but shall in no case be less than 0,5 s. The sensitive frequencies (e.g. clock frequencies) shall be analyzed separately.
- f. Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

5.8.4 DEVIATION FROM TEST STANDARD

No deviation

5.8.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

Note: 1.The EUT clearance from any metallic obstacles shall be at least 0,5 m.

- 2. Interconnecting cables (≤ 1 m) belonging to the EUT shall remain on the insulating support.
- 3. The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected

geometry of the EUT on the ground reference plane.

5.8.6 TEST RESULTS

TEST MODE	l Mode 1	INPUT POWER (POE)	48Vdc
ENVIRONMENTAL CONDITIONS	20deg. C, 68% RH	TESTED BY: Ryan	Chen

FREQUENCY (MHz)	FIELD STRENGTH (V _{r.m.s.})	CABLE	INJECTION METHOD	RETURN PATH	OBSER- VATION	PERFORMANCE CRITERION
0.15 – 80	3	RJ45	CDN-T8	N/A	Note	Α
0.15 – 80	3	Digital Cable (DI/DO)	EM-Clamp	CDN-T8	Note	А

NOTE: There was no change compared with the initial operation during the test.

5.9 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

5.9.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-8

Frequency Range: 50Hz
Field Strength: 1 A/m
Observation Time: 1 minute

Inductance Coil: Rectangular type, 1 m x 1 m

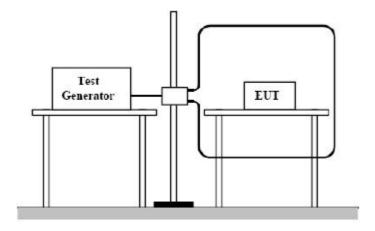
5.9.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HAEFELY Magnetic Field Tester	MAG 100.1	083794-06	NA	NA
COMBINOVA				
Magnetic	MFM10	224	Mar. 02, 2011	Mar. 01, 2012
Field Meter				

NOTE: 1. The test was performed in EMS Room No. 1.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.9.3 TEST PROCEDURE


- a. The equipment is configured and connected to satisfy its functional requirements.
- b. The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- c. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

5.9.4 DEVIATION FROM TEST STANDARD

No deviation

5.9.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

FLOOR-STANDING EQUIPMENT

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50 % of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

5.9.6 TEST RESULTS

TEST MODE	l Mode 1	INPUT POWER (POE)	48Vdc
ENVIRONMENTAL CONDITIONS	20deg. C, 68% RH	TESTED BY: Ryan Chen	

Direction	Field Strength (A/m)	Observation	Performance Criterion
X - Axis	1	Note	А
Y - Axis	1	Note	Α
Z - Axis	1	Note	Α

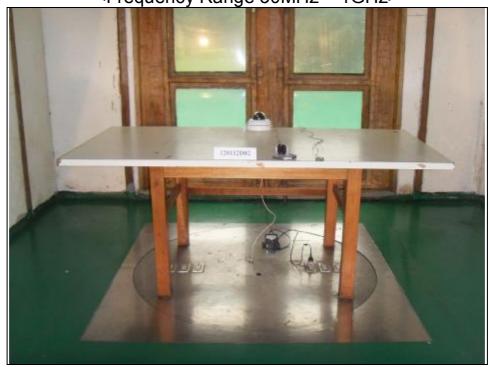
NOTE: There was no change compared with the initial operation during the test.

6 PHOTOGRAPHS OF THE TEST CONFIGURATION

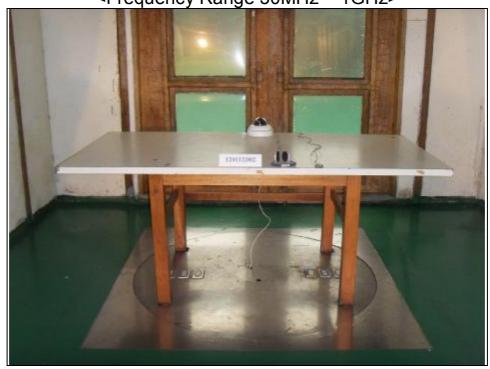
CONDUCTED EMISSION TEST – For Mode 1

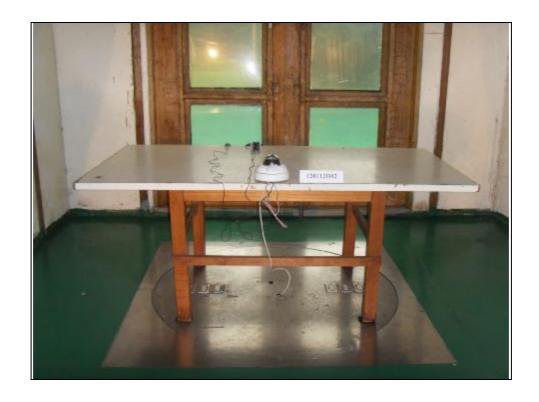
CONDUCTED EMISSION TEST – For Mode 2

TELECOMMUNICATION PORT - RJ45 OF CONDUCTED EMISSION TEST - For Mode 1

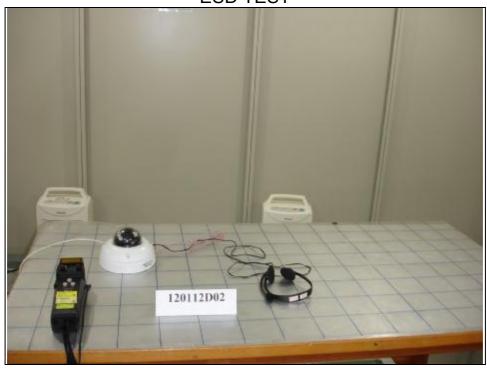

TELECOMMUNICATION PORT - RJ45 OF CONDUCTED EMISSION TEST - For Mode 2


RADIATED EMISSION TEST – For Mode 1 <Frequency Range 30MHz ~ 1GHz>

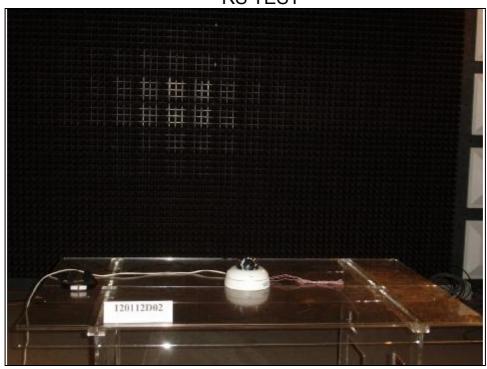

RADIATED EMISSION TEST – For Mode 1 <Frequency Range above 1GHz>

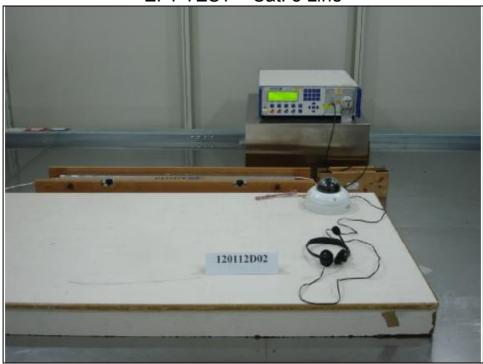


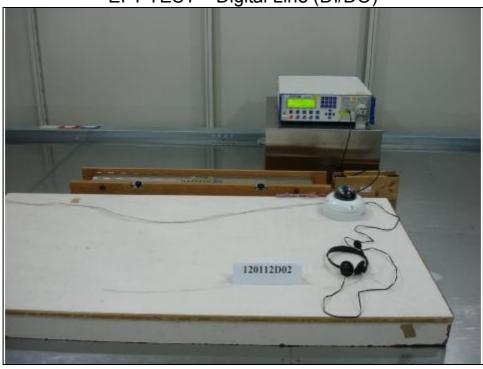
RADIATED EMISSION TEST – For Mode 2 <Frequency Range 30MHz ~ 1GHz>


RADIATED EMISSION TEST – For Mode 2 <Frequency Range above 1GHz>

ESD TEST


ESD TEST POINT

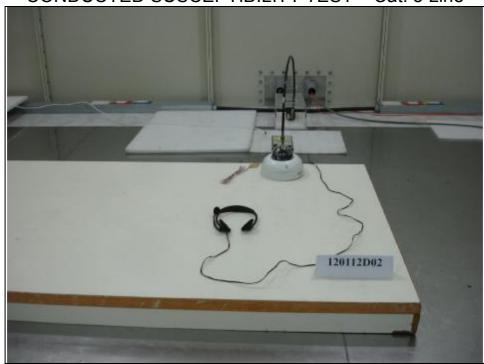

RS TEST



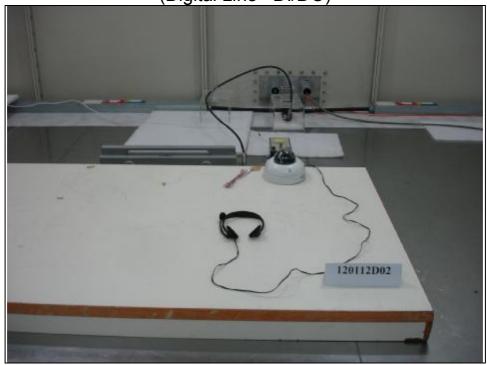
EFT TEST - Cat. 5 Line

EFT TEST – Digital Line (DI/DO)

SURGE TEST- Cat. 5 Line



SURGE TEST – Digital Line (DI/DO)



CONDUCTED SUSCEPTIBILITY TEST - Cat. 5 Line

CONDUCTED SUSCEPTIBILITY TEST – EM-Clamp (Digital Line– DI/DO)

POWER-FREQUENCY MAGNETIC FIELDS TEST

7 APPENDIX - INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation and authorization certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5.phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26051924 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Email: service.adt@tw.bureauveritas.com

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

---END---