

ekekekeka:

14 E 14

CERTIFICATE

Issued Date: Oct. 09, 2012 Report No. : 129427R-ITCEP11V04

This is to certify that the following designated product

Product	:	Network Camera
Trade name	:	νινοτεκ
Model Number	:	PD8136
Company Name	:	VIVOTEK INC.

This product, which has been issued the test report listed as above in QuieTek Laboratory, is based on a single evaluation of one sample and confirmed to comply with the requirements of the following EMC standard.

EN 55022: 2010 EN 61000-3-2: 2006+A2: 2009 EN 61000-3-3: 2008 AS/NZS CISPR 22: 2009+A1: 2010 CISPR 22: 2008 CISPR 24: 2010 EN 55024: 2010 IEC 61000-4-2: 2008 IEC 61000-4-3: 2010 IEC 61000-4-4: 2012 IEC 61000-4-5: 2005 IEC 61000-4-6: 2008 IEC 61000-4-8: 2009 IEC 61000-4-11: 2004

TEST LABORATORY

Vincent Lin / Manager

Kok 25 of of of of of of of the Hs Hs

QuieTek No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C. TEL: +886-2-8601-3788 FAX: +886-2-8601-3789 Email: service@quietek.com http://www.quietek.com

Product Name : Network Camera Model No. : PD8136

Applicant : VIVOTEK INC.

Address : 6F, No.192, Lien-Cheng Rd., Chung-Ho, New Taipei City, 235, Taiwan, R.O.C.

Date of Receipt	: 2012/09/24
Issued Date	: 2012/10/09
Report No.	: 129427R-ITCEP11V04
Report Version	: V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF, NVLAP or any agency of the Government. The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

CE Declaration of Conformity

We herewith confirm the following designated products to comply with the requirements set out in the Council Directive on the approximation of the laws of the Member States relating to Electromagnetic Compatibility Directive (2004/108/EC) with applicable standards listed below.

Product	:	Network Camera
Trade name	:	VIVOTEK
Model Number	:	PD8136
Applicable Harmonized	:	EN 55022: 2010, Class B
Standards under Directive		EN 55024: 2010
2004/108/EC		EN 61000-3-2: 2006+A2: 2009, Class A
		EN 61000-3-3: 2008
		AS/NZS CISPR 22: 2009+A1: 2010
		CISPR 22: 2008
		CISPR 24: 2010

Company Name	:	
Company Address	:	
Telephone	:	Facsimile :

Person in responsible for marking this declaration:

Name (Full Name)

Title/ Department

Date

Legal Signature

Date : Oct. 09, 2012 QTK No.: 129427R-ITCEP11V04

CE Statement of Conformity

This statement is to certify that the designated product below.

Product	:	Network Camera
Trade name	:	VIVOTEK
Model Number	:	PD8136
Company Name	:	VIVOTEK INC.
Applicable Standards	:	EN 55022: 2010, Class B
		EN 55024: 2010
		EN 61000-3-2: 2006+A2: 2009, Class A
		EN 61000-3-3: 2008
		AS/NZS CISPR 22: 2009+A1: 2010
		CISPR 22: 2008
		CISPR 24: 2010

One sample of the designated product has been tested and evaluated in our laboratory to find in compliance with the applicable standards above. The issued test report(s) show(s) it in detail.

Report Number : 129427R-ITCEP11V04

TEST LABORATORY

Vincent Lin / Manager

The verification is based on a single evaluation of one sample of above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab. Logo.

Tes	st Report Certification Issued Date : 2012/10/09 Report No. : 129427R-ITCEP11V04
	QuieTek
Product Name	: Network Camera
Applicant	: VIVOTEK INC.
Address	: 6F, No.192, Lien-Cheng Rd., Chung-Ho , New Taipei City, 235, Taiwan, R.O.C.
Manufacturer	: VIVOTEK INC.
Model No.	: PD8136
EUT Rated Voltage	: By POE
EUT Test Voltage	: By POE
Trade Name	: VIVOTEK
Applicable Standard	: EN 55022: 2010, Class B
	EN 55024: 2010
	EN 61000-3-2:2006+A2: 2009
	EN 61000-3-3:2008
	AS/NZS CISPR 22: 2009+A1: 2010
	CISPR 22: 2008
	CISPR 24: 2010
Test Result	: Complied
Performed Location	: Quietek Corporation (Linkou Laboratory)
	No. 5-22, Rueishu Keng, Linkou Dist., New Taipei City
	24451, Taiwan. R.O.C.
	TEL:+866-2-8601-3788 / FAX:+886-2-8601-3789
Documented By	Anny Chou
	(Adm. Specialist / Anny Chou)
Reviewed By	kevin ker
	(Engineer / Kevin Ker)
Approved By	Hondo
	(Manager / Vincent Lin)

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted (audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scopes:

Taiwan R.O.C.	:	BSMI, NCC, TAF
Norway	:	Nemko, DNV
USA	:	FCC, NVLAP
Japan	:	VCCI

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/</u>

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory :

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C.

TEL:+886-3-592-8858 / FAX:+886-3-592-8859

E-Mail : <u>service@quietek.com</u>

LinKou Testing Laboratory :

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C. TEL : 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>service@quietek.com</u>

Suzhou (China) Testing Laboratory :

No. 99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech Development Zone., Suzhou, China. TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 E-Mail: <u>service@quietek.com</u>

TABLE OF CONTENTS

Page		
1. General Information	7	
1.1. EUT Description	7	
1.2. Mode of Operation	8	
1.3. Tested System Details	9	
1.4. Configuration of Tested System		
1.5. EUT Exercise Software	11	
2. Technical Test		
2.1. Summary of Test Result		
2.2. List of Test Equipment		
2.3. Measurement Uncertainty	15	
2.4. Test Environment		
3. Conducted Emissions (Telecommunication Ports)		
3.1. Test Specification		
3.2. Test Setup		
3.3. Limit		
3.4. Test Procedure	19	
3.5. Deviation from Test Standard	19	
3.6. Test Result		
3.7. Test Photograph		
4. Radiated Emission		
4.1. Test Specification		
4.2. Test Setup		
4.3. Limit		
4.4. Test Procedure		
4.5. Deviation from Test Standard		
4.6. Test Result		
4.7. Test Photograph		
5. Electrostatic Discharge		
5.1. Test Specification		
5.2. Test Setup		
5.3. Limit		
5.4. Test Procedure		
5.5. Deviation from Test Standard		
5.6. Test Result		
5.7. Test Photograph		
6. Radiated Susceptibility		

6.1.	Test Specification	42		
6.2.	. Test Setup42			
6.3.	Limit	42		
6.4.	Test Procedure	43		
6.5.	Deviation from Test Standard	43		
6.6.	Test Result	44		
6.7.	Test Photograph	45		
7. Ele	ctrical Fast Transient/Burst	48		
7.1.	Test Specification	48		
7.2.	Test Setup	48		
7.3.	Limit	48		
7.4.	Test Procedure	49		
7.5.	Deviation from Test Standard	49		
7.6.	Test Result	50		
7.7.	Test Photograph	51		
8. Sur	ge	52		
8.1.	Test Specification	52		
8.2.	Test Setup	52		
8.3.	Limit	52		
8.4.	Test Procedure	53		
8.5.	Deviation from Test Standard	53		
8.6.	Test Result	54		
8.7.	Test Photograph	55		
9. Cor	nducted Susceptibility	56		
9.1.	Test Specification	56		
9.2.	Test Setup	56		
9.3.	Limit	57		
9.4.	Test Procedure	57		
9.5.	Deviation from Test Standard	57		
9.6.	Test Result	58		
9.7.	Test Photograph	59		
10.	Power Frequency Magnetic Field	60		
10.1.	Test Specification	60		
10.2.	Test Setup	60		
10.3.	Limit	60		
10.4.	Test Procedure	60		
10.5.	Deviation from Test Standard	60		
10.6.	Test Result	61		

10.7.	Test Photograph	62
11.	Attachment	63
	EUT Photograph	63

1. General Information

1.1. EUT Description

Product Name	Network Camera
Trade Name	VIVOTEK
Model No.	PD8136

1.2. Mode of Operation

QuieTek has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Pre-Test Mode			
Mode 1: POE M	Mode 1: POE Mode		
Final Test Mode			
Emission	Mode 1: POE Mode		
Immunity Mode 1: POE Mode			

1.3. Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) ssare:

Pro	duct	Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook PC	DELL	PP04X	7607342512	Non-Shielded, 1.8m
2	PoE	VIVOTEK	IJ-1748NDN	N/A	Non-Shielded, 1.8m
3	Micro SD Card 1GB	SanDisk	N/A	0801002841D2N	N/A

1.4. Configuration of Tested System

Conne	ction Diagram	
		PoE (2) A Notebook PC (1) A
		EUT Micro SD Card (3)
Signal	Cable Type	Signal cable Description
A I	LAN Cable	Non-Shielded, 3.0m, two PCS.

1.5. EUT Exercise Software

1	Setup the EUT and simulators as shown on 1.4.
2	Turn on the power of all equipment.
3	The EUT will start to operate and display the video figure from the signal source.
4	The EUT will display "video figure" on monitor.
5	SD card works while the EUT is recording.
6	Repeat the above procedure (3) to (5).

2. Technical Test

2.1. Summary of Test Result

 $\ensuremath{\boxtimes}$ No deviations from the test standards

Deviations from the test standards as below description:

Emission				
Porformed Item	Normativa References	Test	Deviation	
	Normative References	Performed		
Conducted Emission	EN 55022: 2010	No	No	
	AS/NZS CISPR 22: 2009+A1: 2010			
Impedance Stabilization Network	EN 55022: 2010	Yes	No	
	AS/NZS CISPR 22: 2009+A1: 2010			
Radiated Emission	EN 55022: 2010	Yes	No	
	AS/NZS CISPR 22: 2009+A1: 2010			
Power Harmonics	EN 61000-3-2:2006+A2: 2009	No	No	
Voltage Fluctuation and Flicker	EN 61000-3-3:2008	No	No	

Immunity						
Porformed Item	Normativo Roferances	Test	Deviation			
r enormed item	Normative References	Performed				
Electrostatic Discharge	IEC 61000-4-2: 2008	Yes	No			
Radiated susceptibility	IEC 61000-4-3: 2010	Yes	No			
Electrical fast transient/burst	IEC 61000-4-4: 2012	Yes	No			
Surge	IEC 61000-4-5: 2005	Yes	No			
Conducted susceptibility	IEC 61000-4-6: 2008	Yes	No			
Power frequency magnetic field	IEC 61000-4-8: 2009	Yes	No			
Voltage dips and interruption	IEC 61000-4-11: 2004	No	No			

2.2. List of Test Equipment

Impedance Stabilization Network / SR1

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
Capacitive Voltage Probe	Schaffner	CVP2200A	18331	2011/11/14
EMI Test Receiver	R&S	ESCS 30	838251/001	2012/06/05
LISN	R&S	ENV216	100085	2012/02/13
LISN	R&S	ESH3-Z5	836679/023	2012/01/12
Pulse Limiter	R&S	ESH3-Z2	357.8810.52-1	2012/09/20
RF Current Probe	FCC	F-65 10KHz~1GHz	198	2011/10/25
BALANCED TELECOM ISN	FCC	FCC-TLISN-T2-02	20316	2012/07/22
BALANCED TELECOM ISN	FCC	FCC-TLISN-T4-02	20317	2012/07/22
BALANCED TELECOM ISN	FCC	FCC-TLISN-T8-02	20623	2012/07/22

Radiated Emission / Site 7

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
EMI Test Receiver	R&S	ESCI	100648	2011/10/13
Bilog Antenna	Schaffner Chase	CBL6112B	2930	2012/07/06
Pre-Amplifier	QTK	AP-025C	071919	2012/07/07
Site7 NSA	QTK	N/A	N/A	2012/06/27

Radiated Emission / CB7

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
EMI Test Receiver	Agilent	E4440A	MY46185846	2011/12/12
Horn Antenna	ETS-Lindgren	3117	00135205	2012/03/30
Horn Antenna	SCHWARZBECK	9120D	576	2011/11/14
Pre-Amplifier	QuieTek	AP-180C	CHM/071920	2012/07/12
CB7 VSWR	QTK	N/A	N/A	2012/08/25

Electrostatic Discharge / SR6

U				
Instrument	Manufacturer	Type No.	Serial No	Cal. Date
ESD Simulator System	Noiseken	TC-815R	ESS0929097	2012/06/21
Horizontal Coupling Plane(HCP)	QuieTek	HCP AL50	N/A	N/A
Vertical Coupling Plane(VCP)	QuieTek	VCP AL50	N/A	N/A

Radiated susceptibility / CB5

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
AF-BOX	R&S	AF-BOX ACCUST	100007	N/A
Audio Analyzer	R&S	UPL 16	100137	2012/05/15
Biconilog Antenna	EMCO	3149	00071675	N/A
Directional Coupler	A&R	DC 6180	22735	N/A
Power Amplifier	A&R	30S1G3	309453	N/A
Power Amplifier	A&R	100W10000M7	A285000010	N/A
Power Amplifier	SCHAFFNER	CBA9413B	4020	N/A
Power Amplifier	AR	75A250A	0325371	N/A
Power Meter	R&S	NRVD(P.M)	100219	2012/05/18
Pre-Amplifier	A&R	150A220	23067	N/A
Signal Generator	R&S	SMT03	100170	2012/05/16

Electrical fast transient/burst / SR3

Instrument	Manufacturer	Type No.	Serial No	Cal. Date		
TRANSIENT TEST	EMC PARTNER	TRA2000IN6	1138	2011/11/30		
SYSTEM						

0	
Surge	1383

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
TRANSIENT TEST	EMC PARTNER	TRA2000IN6	1138	2011/11/30
SYSTEM				

Conducted susceptibility / SR6

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
TESEQ RF-Generator	TESEQ	NSG 4070A-30	032847	2012/08/08

Power frequency magnetic field / SR3

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
Induction Coil Interface	Schaffner	INA 2141	6002	N/A
Magnetic Loop Coil	Schaffner	INA 702	160	N/A

2.3. Measurement Uncertainty

Impedance Stabilization Network

The measurement uncertainty is evaluated as \pm 2.26 dB.

Radiated Emission

The measurement uncertainty is evaluated as \pm 3.19 dB.

Electrostatic Discharge

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025, the requirements for measurement uncertainty in ESD testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant ESD standards. The immunity test signal from the ESD system meet the required specifications in IEC 61000-4-2 through the calibration report with the calibrated uncertainty for the waveform of voltage and timing as being 3.0 % and 3.8%.

Radiated susceptibility

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025, the requirements for measurement uncertainty in RS testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant RS standards. The immunity test signal from the RS system meet the required specifications in IEC 61000-4-3 through the calibration for the uniform field strength and monitoring for the test level with the uncertainty evaluation report for the electrical filed strength as being 3.57 dB.

Electrical fast transient/burst

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025, the requirements for measurement uncertainty in EFT/Burst testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant EFT/Burst standards. The immunity test signal from the EFT/Burst system meet the required specifications in IEC 61000-4-4 through the calibration report with the calibrated uncertainty for the waveform of voltage, frequency and timing as being 4 %, and 2.5%.

<u>Surge</u>

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025, the requirements for measurement uncertainty in Surge testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant Surge standards. The immunity test signal from the Surge system meet the required specifications in IEC 61000-4-5 through the calibration report with the calibrated uncertainty for the waveform of voltage and timing as being 3.5 % and 0.1%.

Conducted susceptibility

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025, the requirements for measurement uncertainty in CS testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant CS standards. The immunity test signal from the CS system meet the required specifications in IEC 61000-4-6 through the calibration for unmodulated signal and monitoring for the test level with the uncertainty evaluation report for the injected modulated signal level through CDN and EM Clamp/Direct Injection as being 2.0 dB and 2.61 dB.

Power frequency magnetic field

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025, the requirements for measurement uncertainty in PFM testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant PFM standards. The immunity test signal from the PFM system meet the required specifications in IEC 61000-4-8 through the calibration report with the calibrated uncertainty for the Gauss Meter to verify the output level of magnetic field strength as being 2.0 %.

2.4. Test Environment

Performed Item	Items	Required	Actual
	Temperature (°C)	15-35	25.4
Impedance Stabilization Network	Humidity (%RH)	25-75	51
	Barometric pressure (mbar)	860-1060	950-1000
	Temperature (°C)	15-35	23.4
Radiated Emission	Humidity (%RH)	25-75	49
	Barometric pressure (mbar)	860-1060	950-1000
	Temperature (°C)	15-35	23
Electrostatic Discharge	Humidity (%RH)	30-60	52
	Barometric pressure (mbar)	860-1060	950-1000
	Temperature (°C)	15-35	23
Radiated susceptibility	Humidity (%RH)	25-75	52
	Barometric pressure (mbar)	860-1060	950-1000
	Temperature (°C)	15-35	23
Electrical fast transient/burst	Humidity (%RH)	25-75	55
	Barometric pressure (mbar)	860-1060	950-1000
	Temperature (°C)	15-35	23
Surge	Humidity (%RH)	10-75	55
	Barometric pressure (mbar)	860-1060	950-1000
	Temperature (°C)	15-35	23
Conducted susceptibility	Humidity (%RH)	25-75	52
	Barometric pressure (mbar)	860-1060	950-1000
	Temperature (°C)	15-35	23
Power frequency magnetic field	Humidity (%RH)	25-75	55
	Barometric pressure (mbar)	860-1060	950-1000

3. Conducted Emissions (Telecommunication Ports)

3.1. Test Specification

According to EMC Standard : EN 55022

3.2. Test Setup

3.3. Limit

Limits						
Frequency (MHz)	QP (dBuV)	AV (dBuV)				
0.15 - 0.50	84 – 74	74 – 64				
0.50 - 30	74	64				

Remarks:

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz~0.50 MHz.

3.4. Test Procedure

Telecommunication Port:

The mains voltage shall be supplied to the EUT via the LISN when the measurement of telecommunication port is performed. The common mode disturbances at the telecommunication port shall be connected to the ISN, which is 150 ohm impedance. Both alternative cables are tested related to the LCL requested. The measurement range is from 150kHz to 30MHz. The bandwidth of measurement is set to 9kHz. The 75dB LCL ISN is used for cat. 6 cable, the 65dB LCL ISN is used for cat. 5 cable, 55dB LCL ISN is used for cat. 3.

3.5. Deviation from Test Standard

No deviation.

3.6. Test Result

Site : SR8	Time : 2012/09/27 - 20:19
Limit : ISN_Voltage_B_00M_QP	Margin : 10
EUT : Network Camera	Probe : TESEQ_T8 - Line1
Power : By POE	Note : Mode 1, ISN 10M

Site : SR8	Time : 2012/09/27 - 20:21
Limit : ISN_Voltage_B_00M_QP	Margin : 0
EUT : Network Camera	Probe : TESEQ_T8 - Line1
Power : By POE	Note : Mode 1, ISN 10M

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1		0.486	10.125	38.990	49.115	-25.285	74.400	QUASIPEAK
2		3.170	9.920	38.790	48.710	-25.290	74.000	QUASIPEAK
3		4.955	9.887	38.880	48.767	-25.233	74.000	QUASIPEAK
4		8.123	9.934	41.840	51.774	-22.226	74.000	QUASIPEAK
5		13.744	10.040	36.530	46.570	-27.430	74.000	QUASIPEAK
6	*	20.002	10.160	46.890	57.050	-16.950	74.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Site : SR8	Time : 2012/09/27 - 20:21
Limit : ISN_Voltage_B_00M_AV	Margin : 0
EUT : Network Camera	Probe : TESEQ_T8 - Line1
Power : By POE	Note : Mode 1, ISN 10M

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1		0.486	10.125	38.980	49.105	-15.295	64.400	AVERAGE
2		3.170	9.920	36.350	46.270	-17.730	64.000	AVERAGE
3		4.955	9.887	25.150	35.037	-28.963	64.000	AVERAGE
4		8.123	9.934	28.700	38.634	-25.366	64.000	AVERAGE
5		13.744	10.040	22.370	32.410	-31.590	64.000	AVERAGE
6	*	20.002	10.160	38.930	49.090	-14.910	64.000	AVERAGE

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Site : SR8	Time : 2012/09/27 - 20:22
Limit : ISN_Voltage_B_00M_QP	Margin : 10
EUT : Network Camera	Probe : TESEQ_T8 - Line1
Power : By POE	Note : Mode 1, ISN 100M

Site : SR8	Time : 2012/09/27 - 20:24
Limit : ISN_Voltage_B_00M_QP	Margin : 0
EUT : Network Camera	Probe : TESEQ_T8 - Line1
Power : By POE	Note : Mode 1, ISN 100M

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1		1.220	9.990	38.380	48.370	-25.630	74.000	QUASIPEAK
2		10.244	9.966	42.810	52.776	-21.224	74.000	QUASIPEAK
3		13.420	10.034	45.640	55.674	-18.326	74.000	QUASIPEAK
4	*	16.228	10.090	47.420	57.510	-16.490	74.000	QUASIPEAK
5		18.244	10.130	46.070	56.200	-17.800	74.000	QUASIPEAK
6		24.349	10.262	43.600	53.862	-20.138	74.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Site : SR8	Time : 2012/09/27 - 20:24
Limit : ISN_Voltage_B_00M_AV	Margin : 0
EUT : Network Camera	Probe : TESEQ_T8 - Line1
Power : By POE	Note : Mode 1, ISN 100M

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1		1.220	9.990	36.650	46.640	-17.360	64.000	AVERAGE
2		10.244	9.966	39.690	49.656	-14.344	64.000	AVERAGE
3		13.420	10.034	43.450	53.484	-10.516	64.000	AVERAGE
4	*	16.228	10.090	45.150	55.240	-8.760	64.000	AVERAGE
5		18.244	10.130	43.870	54.000	-10.000	64.000	AVERAGE
6		24.349	10.262	40.340	50.602	-13.398	64.000	AVERAGE

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3.7. Test Photograph

Test Mode : Mode 1: POE Mode Description : Front View of ISN Test

Test Mode : Mode 1: POE Mode Description : Back View of ISN Test

4. Radiated Emission

4.1. Test Specification

According to EMC Standard : EN 55022

4.2. Test Setup

Under 1GHz Test Setup:

Above 1GHz Test Setup:

4.3. Limit

Limits						
Frequency (MHz)	Distance (m)	dBuV/m				
30 – 230	10	30				
230 – 1000	10	37				

Limits						
Frequency	Distance	Peak	Average			
(GHz)	(m)	(dBuV/m)	(dBuV/m)			
1 – 3	3	70	50			
3 – 6	3	74	54			

Remark:

- 1. The tighter limit shall apply at the edge between two frequency bands.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)	
Below 108	1000	
108 – 500	2000	
500 – 1000	5000	
Above 1000	5 th harmonic of the highest frequency or 6 GHz, whichever is lower	

4.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3/10 meters. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated on radiated measurement.

Radiated emissions were invested over the frequency range from 30MHz to1GHz using a receiver bandwidth of 120kHz and above 1GHz using a receiver bandwidth of 1MHz. 30MHz to1GHz Radiated was performed at an antenna to EUT distance of 10 meters. Above1GHz Radiated was performed at an antenna to EUT distance of 3 meters. It is placed with absorb on the ground between EUT and Antenna.

4.5. Deviation from Test Standard

No deviation.

4.6. Test Result

Site : Site7	Time : 2012/09/28 - 10:36	
Limit : CISPR_B_10M_QP	Margin : 6	
EUT : Network Camera	Probe : Site7_CBL6112_10M_1207 - HORIZONTAL	
Power : By POE	Note : Mode 1	

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		114.440	-18.517	35.300	16.782	-13.218	30.000	QUASIPEAK
2		125.000	-18.399	32.400	14.001	-15.999	30.000	QUASIPEAK
3		250.000	-16.104	33.600	17.496	-19.504	37.000	QUASIPEAK
4		375.000	-12.226	37.900	25.674	-11.326	37.000	QUASIPEAK
5		425.000	-10.444	39.200	28.756	-8.244	37.000	QUASIPEAK
6		480.000	-9.102	40.300	31.198	-5.802	37.000	QUASIPEAK
7		560.000	-7.080	39.800	32.720	-4.280	37.000	QUASIPEAK
8		640.000	-6.082	33.600	27.517	-9.483	37.000	QUASIPEAK
9		720.000	-4.943	38.500	33.557	-3.443	37.000	QUASIPEAK
10	*	800.000	-3.902	39.800	35.898	-1.102	37.000	QUASIPEAK
11		880.000	-2.700	38.200	35.500	-1.500	37.000	QUASIPEAK

Note:

1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.

- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Site : Site7	Time : 2012/09/28 - 10:13		
Limit : CISPR_B_10M_QP	Margin : 6		
EUT : Network Camera	Probe : Site7_CBL6112_10M_1207 - VERTICAL		
Power : By POE	Note : Mode 1		

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		125.000	-18.399	35.400	17.001	-12.999	30.000	QUASIPEAK
2		168.500	-20.053	40.300	20.246	-9.754	30.000	QUASIPEAK
3		250.000	-16.104	44.000	27.896	-9.104	37.000	QUASIPEAK
4	*	375.000	-12.226	42.900	30.674	-6.326	37.000	QUASIPEAK
5		425.000	-10.444	40.500	30.056	-6.944	37.000	QUASIPEAK
6		480.000	-9.102	39.700	30.598	-6.402	37.000	QUASIPEAK
7		560.000	-7.080	35.000	27.920	-9.080	37.000	QUASIPEAK
8		640.000	-6.082	30.800	24.717	-12.283	37.000	QUASIPEAK
9		720.000	-4.943	31.800	26.857	-10.143	37.000	QUASIPEAK

1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.

- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.

- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Factor(Probe+Cable-Amp).

3

1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.

-16.277

54.000

7.583

AV

30.140

2. " * ", means this data is the worst emission level.

37.723

5425.000

3. Measurement Level = Reading Level + Factor(Probe+Cable-Amp).

1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.

2. " * ", means this data is the worst emission level.

3. Measurement Level = Reading Level + Factor(Probe+Cable-Amp).

1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.

2. " * ", means this data is the worst emission level.

3. Measurement Level = Reading Level + Factor(Probe+Cable-Amp).

4.7. Test Photograph

Test Mode : Mode 1: POE Mode Description : Front View of Radiated Test

Test Mode : Mode 1: POE Mode Description : Back View of Radiated Test

Test Mode: Mode 1: POE ModeDescription: Front View of High Frequency Radiated Test

5. Electrostatic Discharge

5.1. Test Specification

According to Standard : IEC 61000-4-2

5.2. Test Setup

5.3. Limit

Test voltages ¹⁾ :	Air discharges	(kV)	8	
	Contact discharges	(kV)	6	
Polarity			+ & -	
Number of discha	10			
Interval between	≧1			
The test voltages specified are the open-circuit voltages. The test voltages for the lower				
severity levels are included because all the lower severity levels must also be satisfied.				

5.4. Test Procedure

Direct application of discharges to the EUT:

Contact discharge was applied only to conductive surfaces of the EUT. Air discharges were applied only to non-conductive surfaces of the EUT. During the test, it was performed with single discharges. For the single discharge time between successive single discharges will be keep longer 1 second. It was at least ten single discharges with positive and negative at the same selected point. The selected point, which was performed with electrostatic discharge, was marked on the red label of the EUT.

Indirect application of discharges to the EUT:

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions $0.5m \times 0.5m$, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge. It was at least ten single discharges with positive and negative at the same selected point. Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge. It was at least ten single discharges with positive and negative at the same selected point.

5.5. Deviation from Test Standard

No deviation.

5.6. Test Result

Product	Network Camera				
Test Item	Electrostatic Discharge				
Test Mode	Mode 1: POE Mode				
Date of Test	2012/10/08	Test Site	No.6 Shielded Room		

ltem	Amount of Discharge	Voltage	Required Criteria	Complied To Criteria (A,B,C)	Results
Air Discharge	10	+8kV	В	В	Pass
All Discharge	10	-8kV	В	В	Pass
Contract Dischause	25	+4kV	В	В	Pass
Contact Discharge	25	-4kV	В	В	Pass
Indirect Discharge	25	+4kV	В	А	Pass
(HCP)	25	-4kV	В	А	Pass
Indirect Discharge	25	+4kV	В	A	Pass
(VCP)	25	-4kV	В	А	Pass

Note:

The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

NR: No Requirement

- \boxtimes Meet criteria A: Operate as intended during and after the test
- Meet criteria B: Operate as intended after the test
- □ Meet criteria C: Loss/Error of function
- □ Additional Information
 - \Box EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at _____ kV.
 - \boxtimes No false alarms or other malfunctions were observed during or after the test.

Remark:

The Contact discharges were applied at least total 200 discharges at a minimum of four test points.

5.7. Test Photograph

Test Mode : Mode 1: POE Mode Description : ESD Test Setup

6. Radiated Susceptibility

6.1. Test Specification

According to Standard : IEC 61000-4-3

6.2. Test Setup

6.3. Limit

Item	Environmental	Units	Test	Performance				
	Phenomena		Specification	Criteria				
Enclo	Enclosure Port							
	Radio-Frequency	MHz	80-1000					
	Electromagnetic Field	V/m(Un-modulated, rms)	3	А				
	Amplitude Modulated	% AM (1kHz)	80					

6.4. Test Procedure

QuieTek

The EUT and load, which are placed on a table that is 0.8 meter above ground, are placed with one coincident with the calibration plane such that the distance from antenna to the EUT was 3 meters.

Both horizontal and vertical polarization of the antenna and four sides of the EUT are set on measurement.

In order to judge the EUT performance, a CCD camera is used to monitor EUT screen.

All the scanning conditions are as follows:

	Condition of Test	Remarks
1.	Field Strength	3 V/m Level 2
2.	Radiated Signal	AM 80% Modulated with 1kHz
3.	Scanning Frequency	80MHz - 1000MHz
4	Dwell Time	3 Seconds
5.	Frequency step size Δf :	1%
6.	The rate of Swept of Frequency	1.5 x 10 ⁻³ decades/s

6.5. Deviation from Test Standard

No deviation.

6.6. Test Result

Product	Network Camera		
Test Item	Radiated susceptibility		
Test Mode	Mode 1: POE Mode		
Date of Test	2012/10/04	Test Site	Chamber5

Frequency (MHz)	Position (Angle)	Polarity (H or V)	Field Strength (V/m)	Required Criteria	Complied To Criteria (A,B,C)	Results
80-1000	0 °	Н	3	А	А	PASS
80-1000	0 °	V	3	А	А	PASS
80-1000	90°	Н	3	А	А	PASS
80-1000	90°	Н	3	А	А	PASS
80-1000	180°	Н	3	А	А	PASS
80-1000	180°	V	3	А	A	PASS
80-1000	270°	Н	3	А	A	PASS
80-1000	270°	V	3	А	A	PASS

Note:

The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

- Meet criteria A: Operate as intended during and after the test
- ☐ Meet criteria B: Operate as intended after the test
- □ Meet criteria C: Loss/Error of function
- □ Additional Information
 - \Box There was no observable degradation in performance.
 - EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at _____ V/m at frequency _____MHz.
- \boxtimes No false alarms or other malfunctions were observed during or after the test.

6.7. Test Photograph

Test Mode : Mode 1: POE Mode

Description : Radiated Susceptibility Test Setup

Test Mode: Mode 1: POE ModeDescription: Radiated Susceptibility Test Setup

Test Mode : Mode 1: POE Mode

Description : Radiated Susceptibility Test Setup

Test Mode: Mode 1: POE ModeDescription: Radiated Susceptibility Test Setup

Test Mode : Mode 1: POE Mode

Description : Radiated Susceptibility Test Setup

Test Mode: Mode 1: POE ModeDescription: Radiated Susceptibility Test Setup

7. Electrical Fast Transient/Burst

7.1. Test Specification

According to Standard : IEC 61000-4-4

7.2. Test Setup

7.3. Limit

Item Er Pl	nvironmental henomena	Units	Test Specification	Performance Criteria		
I/O and	communication ports					
Fas	st Transients Common	kV (Peak)	<u>+</u> 0.5			
Мо	ode	Tr/Th ns	5/50	В		
		Rep. Frequency kHz	5			
Input DO	C Power Ports					
Fas	st Transients Common	kV (Peak)	<u>+</u> 0.5			
Мо	ode	Tr/Th ns	5/50	В		
		Rep. Frequency kHz	5			
Input AC Power Ports						
Fas	st Transients Common	kV (Peak)	<u>+</u> 1			
Мо	ode	Tr/Th ns	5/50	В		
		Rep. Frequency kHz	5			

7.4. Test Procedure

ЭпіеІек

The EUT is placed on a table that is 0.8 meter height. A ground reference plane is placed on the table, and uses a 0.1m insulation between the EUT and ground reference plane. The minimum area of the ground reference plane is 1m*1m, and 0.65mm thick min, and projected beyond the EUT by at least 0.1m on all sides.

Test on I/O and communication ports:

The EFT interference signal is through a coupling clamp device couples to the signal and control lines of the EUT with burst noise for 1minute.

Test on power supply ports:

The EUT is connected to the power mains through a coupling device that directly couples the EFT/B interference signal.

Each of the Line and Neutral conductors is impressed with burst noise for 1 minute.

The length of the signal and power lines between the coupling device and the EUT is 0.5m.

7.5. Deviation from Test Standard

No deviation.

7.6. Test Result

Product	Network Camera				
Test Item	Electrical fast transient/burst				
Test Mode	Mode 1: POE Mode				
Date of Test	2012/10/04	Test Site	No.3 Shielded Room		

Inject Line	Polarity	Voltage kV	Inject Time (Second)	Inject Method	Required Criteria	Complied to Criteria	Result
LAN	±	0.5 kV	60	Clamp	В	В	PASS

Note:

The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

- □ Meet criteria A : Operate as intended during and after the test
- Meet criteria B : Operate as intended after the test
- □ Meet criteria C : Loss/Error of function
- □ Additional Information
 - EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at _____ kV of Line _____.
- \boxtimes No false alarms or other malfunctions were observed during or after the test.

7.7. Test Photograph

Test Mode : Mode 1: POE Mode Description : EFT/B Test Setup-Clamp

8. Surge

8.1. Test Specification

According to Standard : IEC 61000-4-5

8.2. Test Setup

8.3. Limit

Item	Environmental Phenomena	Units	Test Specification	Performance Criteria			
Signa	I Ports and Telecommunicat	ion Ports(See 1) and	2))	ontona			
5	Surges	Tr/Th us	10/700	C			
L	ine to Ground	kV	± 1	C			
Input	DC Power Ports						
5	Surges	Tr/Th us	1.2/50 (8/20)	D			
L	ine to Ground	kV	± 0.5	D			
AC In	AC Input and AC Output Power Ports						
	Surges	Tr/Th us	1.2/50 (8/20)				
L	ine to Line	kV	± 1	В			
L	ine to Ground	kV	± 2				

- 1) Applicable only to ports which according to the manufacturer's may directly to outdoor cables.
- 2) Where normal functioning cannot be achieved because of the impact of the CDN on the EUT, no immunity test shall be required.

8.4. Test Procedure

The EUT and its load are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min. And projected beyond the EUT by at least 0.1m on all sides. The length of power cord between the coupling device and the EUT shall be 2m or less.

For Input and Output AC Power or DC Input and DC Output Power Ports:

The EUT is connected to the power mains through a coupling device that directly couples the Surge interference signal.

The surge noise shall be applied synchronized to the voltage phase at 0⁰, 90⁰, 180⁰, 270⁰ and the peak value of the a.c. voltage wave. (Positive and negative)

Each of Line-Earth and Line-Line is impressed with a sequence of five surge voltages with interval of 1 min.

8.5. Deviation from Test Standard

No deviation.

8.6. Test Result

Product	Network Camera		
Test Item	Surge		
Test Mode	Mode 1: POE Mode		
Date of Test	2012/10/04	Test Site	No.3 Shielded Room

Inject Line	Polarity	Voltage kV	Angle	Time Interval (Second)	Inject Method	Required Criteria	Complied to Criteria	Result
LAN	±	1kV		60	Direct	С	А	PASS

Note:

The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

Meet criteria A : Operate as intended during and after the test

- Meet criteria B : Operate as intended after the test
- ☐ Meet criteria C : Loss/Error of function
- □ Additional Information

EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at _____ kV of Line _____.

No false alarms or other malfunctions were observed during or after the test.

8.7. Test Photograph

Test Mode: Mode 1: POE ModeDescription: SURGE Test Setup

9. Conducted Susceptibility

9.1. Test Specification

According to Standard : IEC 61000-4-6

9.2. Test Setup

CDN Inject Method

EM Clamp Inject Method

9.3. Limit

Item	Environmental Phenomena	Units	Test	Performance Critoria
Signa	l Ports and Telecommunicat	ion Ports	Specification	Chiena
(Radio-Frequency Continuous Conducted	MHz V (rms, Un-modulated) % AM (1kHz)	0.15-80 3 80	А
Input	DC Power Ports	·		
	Radio-Frequency Continuous Conducted	MHz V (rms, Un-modulated) % AM (1kHz)	0.15-80 3 80	A
Input	AC Power Ports			
(Radio-Frequency Continuous Conducted	MHz V (rms, Un-modulated) % AM (1kHz)	0.15-80 3 80	А

9.4. Test Procedure

The EUT are placed on a table that is 0.8 meter height, and a Ground reference plane on the table, EUT are placed upon table and use a 10cm insulation between the EUT and Ground reference plane.

For Signal Ports and Telecommunication Ports

The disturbance signal is through a coupling and decoupling networks (CDN) or EM-clamp device couples to the signal and Telecommunication lines of the EUT.

For Input DC and AC Power Ports

The EUT is connected to the power mains through a coupling and decoupling networks for power supply lines. And directly couples the disturbances signal into EUT. Used CDN-M2 for two wires or CDN-M3 for three wires.

All the scanning conditions are as follows:

Condition of Test

- 1. Field Strength
- 2. Radiated Signal
- 3. Scanning Frequency
- 4 Dwell Time
- 5. Frequency step size Δf :
- 6. The rate of Swept of Frequency

9.5. Deviation from Test Standard

Remarks 130dBuV(3V) Level 2 AM 80% Modulated with 1kHz 0.15MHz – 80MHz 3 Seconds 1% 1.5 x 10⁻³ decades/s

No deviation.

9.6. Test Result

Product	Network Camera			
Test Item	Conducted susceptibility			
Test Mode	Mode 1: POE Mode			
Date of Test	2012/10/08	Test Site	No.6 Shielded Room	

Frequency	Voltage	Inject	Tested Port	Required	Performance	Result
Range	Applied	Method	of	Criteria	Criteria	
(MHz)	dBuV(V)		EUT		Complied To	
0.15~80	130 (3V)	Clamp	LAN	A	A	PASS

Note:

The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

- Meet criteria A : Operate as intended during and after the test
- $\hfill\square$ Meet criteria B : Operate as intended after the test
- □ Meet criteria C : Loss/Error of function
- □ Additional Information
 - □ EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at _____ dBuV(V) at frequency _____MHz.
 - No false alarms or other malfunctions were observed during or after the test. The acceptance criteria were met, and the EUT passed the test.

9.7. Test Photograph

Test Mode : Mode 1: POE Mode

Description : Conducted Susceptibility Test Setup - Clamp

10. Power Frequency Magnetic Field

10.1. Test Specification

According to Standard : IEC 61000-4-8

10.2. Test Setup

10.3. Limit

Item	Environmental	Units	Test Specification	Performance	
	Phenomena			Criteria	
Enclosu	re Port				
	Power-Frequency	Hz	50	А	
	Magnetic Field	A/m (r.m.s.)	1		

10.4. Test Procedure

The EUT and its load are placed on a table which is 0.8 meter above a metal ground plane measured at least 1m*1m min. The test magnetic field shall be placed at central of the induction coil.

The test magnetic Field shall be applied 10 minutes by the immersion method to the EUT. And the induction coil shall be rotated by 90° in order to expose the EUT to the test field with different orientation (X, Y, Z Orientations).

10.5. Deviation from Test Standard

No deviation.

10.6. Test Result

Product	Network Camera			
Test Item	Power frequency magnetic field			
Test Mode	Mode 1: POE Mode			
Date of Test	2012/10/04	Test Site	No.3 Shielded Room	

Polarization	Frequency	Magnetic	Required	Performance	Test Result
	(Hz)	Strength	Performance	Criteria	
		(A/m)	Criteria	Complied To	
X Orientation	50	1	А	А	PASS
Y Orientation	50	1	A	А	PASS
Z Orientation	50	1	A	А	PASS

Meet criteria A: Operate as intended during and after the test

Meet criteria B: Operate as intended after the test

Meet criteria C: Loss/Error of function

- □ Additional Information
 - EUT stopped operation and <u>could</u> / <u>could not</u> be reset by operator at _____ kV of Line _____.
- No false alarms or other malfunctions were observed during or after the test. The acceptance criteria were met, and the EUT passed the test.

10.7. Test Photograph

Test Mode : Mode 1: POE Mode

Description : Power Frequency Magnetic Field Test Setup

11. Attachment → EUT Photoc

- EUT Photograph
 - (1) EUT Photo

(2) EUT Photo

(3) EUT Photo

